سفارش تبلیغ
صبا ویژن

کلینیک بتن ایران

شرکت کلینیک بتن ایران (کلینیک بتن) شرکتی فعال در زمینه های: گروه مشاور ژئوتکنیک و خدمات فنی و مهندسی بتن: مهندسی و اجرای ترمیم سازه های بتنی، مهندسی و اجرای طرح حفاظت از سازه های بتنی و فولادی، مهندسی و اجرای کف پوشهای صنعتی ، انبارها ، فرودگاه ها ، تعمیرگاه ها و سالن های ورزشی، مقاوم سازی سازه های بتنی به روش FRP و ...، مشاوره ؛ارائه طرح و اجرای آب بندی سازه های بتنی، مشاوره و اجرای کاشت آرماتور ، بولت و کرگیری در بتن مسلح. گروه آزمایشگاهی بتن؛ ارائه طرح اختلاط بت

آزمایش های مربوط به بتن الیاف پلیمری و چگونگی ساخت آن

 

یکی دیگر از الیاف های که در بتن مسلح استفاده می شود بتن الیاف پلیمری می باشد یکی از مزایای الیاف پلیمری مرکب نسبت به مواد فلزی پدیده خستگی می باشد که در گذشته درصنایع هوایی استفاده می شد و رفتار خوبی را در مقابل خستگی از خود نشان داده اند فولاد معمولاًدر اثر گسترش ترک به طور ناگهانی گسیخته میشود ولی مواد مرکب پلیمری در اثر پارگی الیاف و یا ماتریس در سطح تماس الیاف بسیار کند گسیخته و همچنین در بتن دیده می شود. پراکندگی قابل ملاحظه موجود در نتایج آزمایشها روی مواد مرکب پلیمری باعث شده که در عمل تنش طراحی کمتری برای این مواد در نظر گرفته شود. طبق نظر دوهوفر (1973)، رفتار خستگی رزینها مختلف با توجه به تفاوت شیمیایی زیاد فرقی نمی کند ولی اپوکسی ها عملکرد خستگی بهتری دارند.

طبق نظر هالاوی (1993) مکانیزم تخریب مواد پلیمری مرکب عبارت است از:

1-ترک برداشتن ماتریس

2-لایه لایه شدن مواد

3-پارگی الیاف

4-از بین رفتن چسبندگی بین ماتریس والیاف

طبق نظریه کرسیس(1989):ورقها با الیاف یک جهته به دلیل اینکه تمام بار درجهت نیرو به الیاف وارد میشودمقاومت خستگی خوبی دارند ورقه ورقه شدن الیاف مرکب به علت تنشهای بین صفحه ای میباشد معمولاً از انتهای آزاد وتکیه گاه شروع می شود وبه طرف داخل ورق گسترش می یابد.

یک مکانیزم مهم خرابی جدای بین الیاف و رزین در سال 1973 دو هیو فز مشاهده کرد:

Gfrp باعث جداشدگی میشود ولی در GFrp تازه تا70درصد مانع جدا شدگی می شود. استاتیکی 30درصد مقاومت

ترمیم وتقویت سازه های بتن مسلح با استفاده از روش الیاف پلیمری مرکب در بتن مسلح (اف ار پی):

درحقیقت پوشش کاملی از ورقهای نا زک فولاد والیاف پلیمری مرکب است که می توان آن را برای تقویت تیرها وستون ها ودال هاو...استفاده نمود. مقاوم سازی با الیاف فولادی از طریق چسباندن به وسیله چسب رزین واپوکسی در تیرها وستون ها انجام میگیرد در ترمیم تیرها و ستون ها به روش (اف ار پی ) با الیف پلیمری مرکب باید موارد زیر را در نظر داشت:

شرایط به کار گیری و سختی کار :

1-ابعاد لایه تقویت درهندسه و وزن بنا

2-دوره زمانی اجرای طرح تقویت 
3-هزینه اجرای طرح


انواع الیاف فولادی مرکب در ساختمان شامل زیر میباشد:

1-الیاف شیشه

2-الیاف کربن

3-الیاف آرامید

در الیاف مرکب فولادی می توان از چند نوع الیاف استفاده کرد که به ان هیبرید (Hybrid) گویند.

1- الیاف شیشه ای: رایج ترین وپر مصرف ترین نوع الیاف مورد استفاده در سقف کامپوزیت است. بر حسب نوع ترکیب مواد به کار رفته به انواع گوناگون تقسیم میشوند. مزایای این الیاف قیمت پایین واستحکام کششی بالا ومقاومت شیمیای بالاو خواص عایقی بالا میباشد معایب آنها عبارتست از مدول کششی پایین و وزن مخصوص نسبتاً بالا وحساسیت در برش وهمچنین با دما ورطوبت نیز استحکام کاهش می یابد.

2- الیاف کربن: دانسیسته آن 22.7 کیلو نیوتن برمتر مکعب می باشد وشکل مختلف ان بلوری می باشد وضخامت ان نازکتر از موی انسان می باشد و دارای قطر 6-10میکرو متر می باشد.

مزایایی اصلی آن:

استحکام بالای خستگی-مقاومت در برابر خوردگی- ضریب انبساط حرارتی پایین

معایب:

قیمت بالا -کرنش در شکست-هادی الکتریکی

3- الیاف آرامید:

پلیمر های آرامید دارای خصوصیاتی چون نقطه ذوب بالا و پایداری حرارتی عالی ومقاومت در برابر شعله وغیر قابل حل بودن در بسیاری از حلال های آلی شناخته شده اند دانسیسته ان بین 12-14.6 کیلو نیوتن بر متر مکعب می باشد دارای خواصی چون مقاوت در برابر ضربه عدم حساسیت به شکاف خواص الکتریک- خود خاموش کنی از خصوصیات آن می باشد.

منبع: ایران سازگان

نویسنده : کلینیک  بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))


دستگاه های غیرمخرب تعیین دانسیته آسفالت

چگالی بهترین معیار سنجش کیفیت یک سطح راه تمام شده است که به متخصصان و مهندسان این اطمینان را می دهد که راه احداث شده حداقل تا عمر طرح و یا بیشتر از آن دوام می آورد. اندازه گیری چگالی مخلوط آسفالتی در حین عملیات تراکم، از این نظر که حاوی دو نکته مهم است، در نتیجه کار مؤثر است . اول اینکه این مطلب را مشخص می کند که درچه مرحله ای از عملیات تا رسیدن به چگالی تعیین شده، قرار داریم و از این نظر می تواند بعنوان نشانگری برای پیمانکار باشد که آیا نیاز به اقدامات تعدیلی برای رسیدن به چگالی نهایی می باشد یا نه.

دوم اینکه به پیمانکار اطلاع می دهد که چه زمانی عملیات تراکم متوقف شود و ادامه عملیات در مراحل دیگر دنبال شود.

در حال حاضر متداول ترین و البته دقیق ترین روش برای تعیین دانسیته در محل مخلوط آسفالتی در سطح کشور، روش مغزه گیری می باشد. روش معمول برای انجام این کار استفاده از مغزه گیر و آزمایش بر روی مغزه های بدست آمده است. اما این روش که بصورت سنتی سالیان متمادی است که در کشور اجرا می شود دارای معایب عمده ای است که چند مورد آن شامل:

• ایجاد خرابی در سطح روسازی

• هزینه نسبتا بالا

• عدم تکرار پذیری برای یک نقطه خاص

• عدم توانایی ثبت تغییرات متغیرهایی نظیر وزن مخصوص واقعی برای یک نقطه خاص

• و صرف وقت زیاد است.

بنابر دلایل ذکر شده، انجام آزمایش بروش مغزه گیری با روش های دیگر جایگزین می شود. از جمله زمان بر بودن منجر به این مساله می شود که نقاط ضعف لایه اجرا شده به سرعت مشخص نشود و لذا اقدامات اصلاحی مربوط به رویه در زمان مناسب صورت نمی گیرد.

در راستای بهینه نمودن روند انجام آزمایش های بالا می توان از آزمایش های غیر مخرب (NDT) استفاده کرد. این نوع آزمایش ها در سطح روسازی ایجاد خرابی نمی کنند، هزینه انجام آنها کمتر می باشد، تکرار پذیرند و بعلت عدم ایجاد خرابی بوسیله آنها به راحتی می توان تغییرات متغیرهای دلخواه نقطه مورد نظر را نیز ثبت کرد، که در حال حاضر شامل دو روش هسته ای و غیر هسته ای می باشند.

تعیین چگالی مخلوط آسفالتی به روش هسته ای
یکی از آزمایش هایی که در تعیین دانسیته لایه های سنگدانه ای کاربرد دارند، آزمایش هسته ای می باشد که از آن می توان در تعیین چگالی و رطوبت خاک استفاده کرد. برای هر کدام از موارد مورد استفاده در روسازی یعنی اندازه گیری چگالی به روش هسته ای روش های خاصی وجود دارد که در چند دهه اخیر مورد تحقیق بوده اند و دستگاه های خاصی که ثمره این تحقیقات می باشند از فن آوری ویژه ای سود می برند. نکته مهم در این دستگاه ها آن است که رسیدن به دقت مورد نیاز آزمایش های روسازی، به این بستگی دارد که چشمه (source) رادیواکتیو از چه نوع باشد و در ضمن متغیرهای هندسی دستگاه باید تطبیق کافی با آزمایش های روسازی و شرایط انجام آنها داشته باشند.

اندازه گیر هسته ای ارزان تر و سریع تر از روش مغزه گیری ( کر گیری ) است، اما با این حال معایب زیادی نیز دارد. اولین و بارزترین ضرر آن استفاده از یک منبع رادیو اکتیو است که مسلما نیاز به تنظیمات زیاد و تعلیم تخصصی نیروی کار آزموده دارد.

عیب دیگر آن شامل کسب مجوز و نوسازی تجهیزات، آموزش تکنسین ها و کارکردن نه چندان ساده و جاسازی تجهیزات آن می

باشد.

نقاط قوت دستگاه چگالی سنج هسته ای

1- بر اساس مقایسه های صورت گرفته توسط مراکز و موسسات، دقت دستگاه هسته ای از دستگاه های غیر هسته ای بیشتر است.

2- شرایط تغیرات دما و تغییرات رطوبت بر روی عملکرد دستگاه تأثیری نمی گذارد.

نقاط ضعف دستگاه چگالی سنج هسته ای

• کار با این دستگاه ها نیاز به آموزش ویژه کاربران دارد.

• خطر تشعشعات مضر به دلیل وجود منبع رادیو اکتیو همیشه وجود دارد و هیچگاه حتی سازنده در مورد بی خطر بودن دستگاه در این زمینه تاکیدی نداشته است و نیز ذکر این مطلب ضروری است که کاربر این دستگاه بعد از مدت زمان مشخصی کار با دستگاه، باید تعویض شود.

• برای کار با این دستگاه ها نیاز به مجوز کار با دستگاه می باشد.

• وزن دستگاه هسته ای در مقایسه با دستگاه های دیگر غیر هسته ای بالاتر است (لااقل 2 برابر) و بدیهی است که این اختلاف وزنی هنگامی که روزانه صدها برداشت صورت می گیرد قابل توجه است.

• دستگاه های هسته ای نیاز به یک زمان گرم شدن اولیه (Warm up) برای شروع به کار دارند در حالیکه این زمان برای دیگر دستگاه های غیر هسته ای به اندازه زمان روشن شدن دستگاه است.

• زمان برداشت برای تکمیل یک آزمایش در محوطه کار برای این دستگاه بیشتر از زمان برداشت برای دستگاه های غیر هسته ای می باشد.

• عدم توانایی در سنجش چگالی مخلوط های بصورت مغزه (آزمایشگاهی یا برداشت از محل) از دیگر نکات منفی کار با این دستگاه است.

• صاحب نظران صنعت روسازی و کاربران دستگاه های تعیین چگالی مخلوط های آسفالتی، به دلائل فوق الذکر و مخصوصا خطر منبع رادیو اکتیو دستگاه علاقمند به استفاده از تجهیزات جایگزین برای این دستگاه می باشند.

تعیین دانسیته مخلوط آسفالتی به وسیله روش غیرهسته ای دستگاه (PQI)

نشانگر کیفیت روسازی (Pavement Quality Indicator) ابزاری است به منظور تعیین سریع درجه تراکم روسازی، که به کمک آن مشخص می شود آیا آسفالت اجرا شده به میزان تراکم مناسب رسیده است یا نه.

این وسیله برای مقایسه با تکنولوژی های حال حاضر در تعدادی از قراردادها مورد آزمایش واقع شده است.

این وسیله به دفعات زیاد در امریکا مورد استفاده قرار گرفته است و منابع زیادی تصدیق کرده اند که این دستگاه، در کنترل کیفیت مخلوط های آسفالتی بسیار موثر بوده است.

بر اساس اطلاعات موجود، این سیستم در 12 کشور و 145 ایالت به فروش رسیده است.

تجربیات حاصله راجع به این سیستم حاکی مطالب زیر است:

- کار کردن و استفاده از دستگاه ساده است.

- محدودیت حمل و نقل برای دستگاه وجود ندارد.

- کار با دستگاه نیاز به آموزش محدود و ساده ای دارد.

- سبک است.

- در مدت زمان کوتاهی چندین اندازه گیری صورت می گیرد.

- به سرعت به اطلاعات حاوی میزان و کیفیت تراکم دست یابی حاصل می شود.

- در مورد اینکه آیا لایه به صورت یکنواخت متراکم شده است، تشخیص حاصل می شود و امکان اصلاحات سریع فراهم می شود.

تکنولوژی اندازه گیری

دستگاه تعیین مقدار چگالی واقعی را با اندازه گیری مقاومت الکتریکی انجام می دهد. مقاومت الکتریکی آسفالت تابع ثابت دی الکتریک آن است. سیستم (PQI)، یک مدار الکتریکی فراهم می کند که این مدار یک ولتاژ فرکانس رادیویی تولید می کند که به یک الکترود حسی اعمال می شود و الکترود حسی یک میدان الکتریکی در مصالح روسازی ایجاد می کند. یک الکترود حسی دوم پاسخ های دی الکتریک از مصالح روسازی را اندازه گیری می کند. یک تحلیلگر داده، چگالی مصالح روسازی را بر اساس مقاومت جریان مختلط مصالح روسازی تعیین می نماید.

• ناحیه اتصال به زمین

• ناحیه دریافت الکتریکی

• ناحیه برداشت تغییرات چگالی

جمع بندی کلی از دیدگاه کاربران دستگاه های غیر مخرب غیر هستهای تعیین دانسیته روسازی

• در مورد دستگاه های الکترومغناطیسی استفاده از سیگنال های الکترو مغناطیسی این مزیت را نسبت به دستگاه های هسته ای دارد که نیاز به آموزش های ویژه کاربر، مدرک یا مجوز کار با دستگاه و خطر تشعشعات رادیو اکتیو را منتفی می سازد. اما با این حال قبل از پذیرفتن هر تکنولوژی جدیدی برای تعیین چگالی مخلوط آسفالتی، نیاز مبرم به ارزیابی آن در دو وضعیت آزمایشگاهی و میدانی تحت شرایط کنترل شده وجود دارد.

• گرچه هر دو دستگاه PQI و پیو تراکر دقت دستگاه چگالی سنج هسته ای مورد استفاده را نداشتند اما از طرف دیگر مزایای مرتبط نبودن با قواعد مربوط به منابع رادیواکتیو دستگاه هسته ای و نیز توانایی برداشت چند تایی در مدت زمان کوتاهی، آنها را برای کنترل کیفیت چگالی روسازی در طول دوره ساخت مورد توجه بیشتر قرار می دهد.

• کالیبراسیون این دستگاه ها برای مصالح شرایط محلی در رسیدن به نتایج صحیح بسیار مهم می باشد. در هر جای ممکن، کالیبراسیون با استفاده از یک مقطع آزمایش باید صورت گیرد. اما فرضیات موجود براساس اطلاعات و تجربیات در دسترس در مورد مصالح محلی و مصرفی می تواند به میزان قابل توجهی در افزایش دقت و صحت نتایج تاثیر گذار باشد.

• هر دو دستگاه PQI و پیوتراکر، تجهیزات مناسبی برای کنترل چگالی مخلوط آسفالتی (Hot Mix Asphalt)در طول دوره اجرا می باشند. هر دو دستگاه قابلیت برداشت نتایج سریع به منظور تعیین نقاط با چگالی کم و داده های پرت و همچنین انجام اقدامات اصلاحی را دارند.

• تغییرات در میزان رطوبت، دانه بندی، منبع تامین مصالح و اختلاف دمای بین مصالح مرجع و روسازی که مد نظر اندازه گیری است، بر روی درستی قرائت ها تاثیر می گذارند.

• سازندگان دستگاه PQI توصیه کرده اند در صورت بالا بودن درصد آب موجود در مخلوط، برداشت و قرائت صورت نگیرد. این در حالی است که عدد خاصی را برای میزان H2o بالا توصیه نکرده اند ولی بنابر نتایج و مشاهدات آزمایشگاهی این عدد بالاتر از 5 درصد بنظر می رسد.

• عدد H2o نشان داده شده در نمایشگر دستگاه شاخص خوبی برای تعیین حد رطوبت بنظر می رسد.

• در بیشتر موارد کاهش دما باعث افزایش در مقدار چگالی محاسبه شده توسط دستگاه PQI می شود و دال های سرد چگالی بالاتری داشتند.

• ضروری است که دستگاه با یک مقطع روسازی (یا دال) که چگالی آن مشخص است و از همان مصالحی که برای روسازی هدف، مدنظر ساخته شده، کالیبره شود. براساس نتایج مطالعات میدانی 2001، نتیجه گرفته شد که به منظور استفاده از دستگاه های اندازه گیری غیر هسته ای برای بدست آوردن چگالی روسازی، ضروری است تا کالیبراسیون تجهیزات بر مبنای مقادیر چگالی شناخته شده و مصالح مشابه بکار رفته در روسازی انجام شود. با توجه به اینکه، این عمل در عملیات میدانی مشکل می باشد، بنابراین کارایی و استفاده هر دو دستگاه PQI و پیوتراکر در مقوله سنجش چگالی روسازی برای پذیرش کیفیت QA (Quality Acceptance) خود را نمایان می کند.

بازخورد فوری بدست آمده توسط هر دو این تجهیزات، کمک به تشخیص مکان های با چگالی پایین در روسازی می باشد و سپس عملیات اصلاح به منظور روسازی یکنواخت انجام شود.

نویسنده : کلینیک بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن

 

 


خواص FRP

 

بر طبق گزارش اداره فدرال بزرگراه های آمریکا هنگام بررسی پلها از نظر سازه ای به دلیل پوشش کم بتن، طراحی ضعیف، عدم مهارت کافی هنگام اجرا و سایر عوامل همانند شرایط آب و هوایی سبب ایجاد ترک در بتن و خوردگی آرماتور های فولادی شده است. 

پس از سالها مطالعه بر روی خوردگی،  اف آر پیFRP به عنوان یک جایگزین خوب آرماتور های فولادی در بتون پیشنهاد شده اند. 

سه نوع میلگرد ( AFRP) , ( CFRP ) , ( GFRP ) از انواع تجاری آن هستند که در صنعت ساختمان کاربرد دارند. 

از این مواد به جای آرماتور های فولادی یا کابلهای پیش تنیده در سازه های بتنی پیش تنیده و یا غیر پیش تنیده استفاده می شود.  مواد FRP موادی غیر فلزی و مقاوم دربرابر خوردگی است که در کنار خواص مهم دیگری همانند مقاومت کششی زیاد آنها را برای استفاده بعنوان آرماتور مناسب می کند.

از آنجایی که FRP ها مصالحی ناهمسانگرد هستند نوع و مقدار فیبر و رزین مورد استفاده، سازگاری فیبر و کنترل کیفیت لازم هنگام ساخت آن نقش اصلی را در بهبود خواص مکانیکی آن دارد.  

به طور کلی مزایای آن به صورت زیر دسته بندی می شود:

1- مقاومت کششی بیشتر از فولاد

2-یک چهارم وزن آرماتور فولادی

3-عدم تأثیر در میدانهای مغناطیسی و فرکانس های رادیویی، برای مثال تأثیر روط دستگاه های بیمارستانی 

4-عدم هدایت الکتریکی و حرارتی

لذا به دلیل مزایای بالا به عنوان یک جایگزین مناسب برای آرماتورهای فولادی در سازه های دریایی، سازه پارکینگ ها، عرشه های پل ها، ساخت بزرگراه هایی که بطور زیادی تحت تأثیر عوامل محیطی هستند و در نهایت سازه هایی که در برابر خوردگی و میدانهای مغناطیسی حساسیت زیادی دارند پیشنهاد می کند.

نویسنده : کلینیک  بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 


چه تفاوتی بین روان کننده بتن، فوق روان کننده بتن و ابر روان کنند

 

روان کننده های بتن اولین نسل تولید شده افزودنی بتن می باشند که بر پایه لیگنوسولفونات بوده و معمولا" برای بتن های معمولی با نسبت آب به سیمان بیشتر از 0/45 کاربرد دارند.

فوق روان کننده ها دومین نسل تولید شده در خصوص روان کننده های بتن می باشند که بر پایه نفتالین سولفونات بوده و برای بتن های با نسبت آب به سیمان 0/4 الی 0/45 به کار می روند.

ابر روان کننده ها آخرین و جدیدترین نسل روان کننده هستند که بر پایه پلی کربکسیلات بوده و برای تولید بتن های ویژه از جمله بتن خود تراکم کاربرد دارند. این نوع روان کننده ها گران هستند و معمولا" برای بتن با نسبت آب به سیمان کمتر از 0/4 کاربرد دارند.

نحوه اثر روان کننده بتن چگونه است ؟

این مواد بر روی ذرات سیمان می نشینند و با باردار کردن ذرات سیمان، ایجاد نیروی دافعه بین ذرات می کنند بنابراین ذرات همدیگر را دفع کرده و بتن روان می شود.

روان کننده های بتن به چه منظور در بتن به کار می روند ؟

روان کننده ها ی بتون برای سه منظور در بتن به کار می روند:

1-در بتن با نسبت آب به سیمان برابر با بتن شاهد، باعث افزایش روانی بتن شده و بتن را بدون کاهش مقاومت، کار پذیر می کنند.

2-در بتن با نسبت آب به سیمان کمتر نسبت به بتن شاهد، روانی کافی را به بتن می دهند و باعث افزایش مقاومت بتن می شوند.

3-در بتن با عیار سیمان کمتر، می توانند به وسیله کاهش نسبت آب به سیمان و تامین روانی باعث صرفه جویی در مصرف سیمان شوند.

دوغاب میکروسیلیس چیست و چه مزیتی نسبت به ژل میکروسیلیس دارد ؟

از اختلاط آب با پودر میکروسیلیس، مخلوط های %60-42 میکروسیلیس در آب تهیه می شود که نسبت به ژل میکروسیلیس حاوی مقدار بیشتر پودر میکروسیلیس می باشد. دوغاب %50 میکروسیلیس در آب دارای دانسیته 1400kg/m3 بوده که دارای میکروسیلیس خشک به مقدار 700kg/m3 است. این دانسیته نسبت به شکل پودری میکروسیلیس که دانسیته حدود 300kg/m3 دارد تقریبا" 2 برابر بوده و لذا هزینه های حمل و نقل را تا 2 برابر کاهش می دهد.

بتن حاوی روان کننده بعد از 48 ساعت به گیرش نهایی نرسیده و در هنگام باز کردن قالب فرو ریخته است. علت چیست؟

پس از بازدید کارشناسان فنی از پروژه و بررسی مشکل، مشخص گردید پس از افزودن روان کننده متاسفانه هیچ اصلاحی در طرح اختلاط بتن صورت نگرفته است و روانی بیش از حد باعث جدا شدن سنگدانه (Segregation) گردیده و خروج شیرابه بتن از درزهای قالب باعث تهی شدن بتن از خمیر سیمان گردیده و نهایتاٌ چیزی که در قالب باقی مانده شن و ماسه بوده است. پس از کاهش آب اختلاط به میزان 15 درصد بتن همگنی خود را بدست آورده و در ادامه عملیات به کار گرفته شد.

آیا استفاده از افزودنی های بتن باعث کاهش مقاومت فشاری بتن می گردد؟

برخی افزودنی های شیمیایی بتن در استاندارد 2930 ایران دارای مشخصات فنی استاندارد است. در این استانداد اجازه داده شده است بصورت محدود برای برخی از افزودنی های شیمیایی با کاهش مقاومت در مقایسه با مخلوط شاهد ( کنترل ) رو برو باشیم . در این رابطه نظر شما را به جدول زیر جلب می کنم .اما باید در نظر داشت اجازه برای کاهش مقاومت در مشخصات استاندارد، الزاما" به معنای پائین آمدن مقاومت بتن با محصولات موجود نخواهد بود.

حداقل مقاومت در مقایسه با مخلوط شاهد (درصد)بنابراین در 8 مورد از 13 مورد اجازه کاهش مقاومت وجود دارد.

بدیهی است در استفاده از روان کننده ای که برای کاهش نسبت آب به سیمان یا کاهش مصرف سیمان بکار می رود با افزایش مقاومت روبرو می شویم بویژه در طرحهای اختلاط آزمایشگاهی و کارگاهی، تاثیر این مواد چشمگیر است.

هم چنین می توان گفت که با مصرف دوده سلیسی یا برخی مواد معدنی پودری به شرط اینکه با کاهش نسبت آب به سیمان روبرو نشویم می توان مقاومت های دراز مدت وبی را بدست آورد و در مورد دوده سیلیسی مقاومت های کوتاه مدت 7 و میان مدت 28 روزه نیز با افزایش همراه است. ضمنا" باید اذعان کرد که هدف از مصرف افزودنی ها همواره افزایش مقاومت نیست بلکه خواص دیگری مانند دوام و نفوذ ناپذیری و یا امکان پذیری یک سازه مطرح است که بدون این مواد، دستیابی به این خواسته ها میسر نمی گردد.

در استاندارد EN934، مشخصات افزودنی ها همان مشخصات استاندارد 2930 ایران است. استاندارد ASTM C494 هفت نوع افزودنی شیمیایی را مطرح کرده است که برای یک نوع آن کاهش مقاومت تا 90 درصد را منظور نموده است (کندگیر کننده). هم چنین برای زود سخت کننده ها مقاومت 6 ماهه و 1 ساله تا 90 درصد مجاز دانسته است. در ASTM C1017 برای فوق روان کننده ( با نسبت آب به سیمان برابر) از نوع خنثی و دیرگیر، کاهش مقاومت 3 روزه تا یکساله را تا 90 درصد مجاز دانسته است. هم چنین در ASTM C260 برای مواد حباب زا مقاومت 3، 7 و 28 روزه می تواند 90 درصد مخلوط شاهد باشد.

آیا می توان از حباب زائی بتن برای نفوذ ناپذیر نمودن بتن استفاده نمود ؟

استفاده از مواد حبابزا بویژه اگر با حفظ روانی و کاهش مصرف آب همراه باشد به کاهش نسبت آب به سیمان نیز منجر می شود و همراه با کاهش نفوذ پذیری ناشی از وجود حبابهای پراکنده ریز می تواند بسیار مفید باشد اما نفوذ ناپذیری کامل حاصل نمی گردد. با مصرف حباب زا جذب آب و جذب آب موئینه معمولا" کمتر می شود استفاده از نسبت آب به سیمان کم، با مصرف فوق روان کننده در کنار مصرف مواد بند کننده از نوع دافع آب یا انواع دیگر می تواند مفید واقع شود. بکارگیری حداکثر اندازه کوچکتر و با دانه بندی ریزتر و مواد پرکننده خنثی (پودرسنگ) یا مواد ریز معدنی فعال (پزولانها و سرباره ها) می تواند به کاهش نفوذ پذیری منجر گردد. اما در صورتیکه هدف از کاهش نفوذ پذیری و جذب آب، بهبود دوام تری و خشکی یا یخبندان و آبشدگی پی در پی هیچ ماده ای جایگزین ماده حبابزا نخواهد شد.

آیا استفاده از ضدیخ بتن باعث افت مقاومت فشاری می گردد؟

در ابتدا باید گفت در استانداردهای موجود، ماده ای بنام یخ بتن وجود ندارد و اصطلاحی است که در ایران به مواد زود سخت کننده و یا زوددیرکننده (شتاب دهنده Accelerator) به غلط اطلاق شده است و متاسفانه تا کنون مبارزه با برگزیدن این واژه غلط و نابجا بجائی نرسیده است علت این مقابله، ایجاد گمراهی در هنگام مصرف این مواد بویژه در هوای سرد است.

طبق استاندارد ملی 2930 کاهش مقاومت 28 روزه تا 90 درصد مخلوط شاهد مجاز است. در استاندارد ASTM C494 مقاومت 6 ماهه و ا ساله می تواند حداقل 90 درصد مقاومت فشاری مخلوط شاهد باشد. در ساخت برخی زودسخت کننده (ضدیخ ها) از موادی می توان بهره گرفت که حداقل تا سن 28 روز شاهد کاهش مقاومت نباشیم. گاه مصرف کننده این مواد، بدون در نظر گرفتن آب موجود در آن باعث افزایش نسبت آب به سیمان می شود و این امر، یعنی کاهش مقاومت فشاری بتن، بویزه در سن 28 روز و پس از آن، بطور جدی مشاهده می شود. بدیهی است با مصرف این مواد و منظور نمودن آب موجود در آن در هنگام ساخت بتن، شاهد افزایش مقاوم در سنین 1 تا 7 باشیم . امروزه در برخی از کشورها ظاهرا" مواد ضد یخ بتن نیز تولید و مصرف می شود که این مواد هنوز در ایران بکار نرفته است و موجود نیست.

در زمان استفاده از ضد یخ بتن (شتاب دهنده واکنش هیدراسیون) آیا نیاز است تا تمهیدات دیگری مد نظر قرار گیرد ؟

یکی از زیانهای استفاده از نام ضد یخ بجای زودگیر کننده یا شتاب دهنده و یا زود سخت کننده آنست که مصرف کننده به غلط تصور می کند که با مصرف این ماده، جلوییخ زدن بتن گرفته می شود . با مصرف اینگونه مواد ممکن است مانند هر ماده دیگر حداکثر 2 درجه سانتیگراد نقطه انجماد را پایین آورد اما معنای آن جلوگیری از یخ زدن و ضدیخ بودن نیست .این مواد باعث تسریع در هیدراسیون سیمان می شودو در دمای پایین، افزایش مقاومت بیشتری را شاهد خواهیم بود. افزایش سرعت هیدراسیون به افزایش سرعت گرمازائی نیز منجر می شود و می تواند کمک بهتری را به ما بنماید. بهرحال انجام هیدراسیون در حدی که از نظر مهندسی به ما کمک شایانی بنماید مستلزم داشتن دمای بتن یا دمای محیط بیش از 5 درجه سانتیگراد است و گرنه تسریع هیدراسیون در دمای نزدیک به صفر معنایی ندارد. بنابراین لازم است دستورالعمل های بتن ریزی در هوای سرد شامل ساخت بتن با دمای مناسب و ریختن و عمل آوری در دمای مناسب حتما" رعایت گردد.

آیا ضدیخ بتن در فریزر یخ می زند ؟

نقطه انجماد محلول ها به نوع ماده (جرم ملکولی) و غلظت آن بستگی دارد. مواد ضدیخ ممکنست در دمای تا c° 10- یخ نزنند اما اگر غلظت آنها به حدی برسد که در بتن شاهد آن هستیم این ماده و بتن در دمای 2- تا c° 3- یخ خواهند زد. اصولا" مواد زود سخت کننده (به غلط ضدیخ ) را نمی توان با گذاشتن در فریزر و کنترل دمای یخ زدن مورد آزمون قرار داد.

آیا می توان به جای ضدیخ بتن از فوق روان کننده زودگیر استفاده نمود؟

از مواد فوق روان کننده می توان بعنوان فوق کاهنده آب استفاده کرد. برخی از آنها می توانند تا 35 درصد کاهش آب و در نتیجه 35 درصد کاهش نسبت آب به سیمان را در پی داشته باشند. با کاهش نسبت آب به سیمان، مقاومت های اولیه ا زرشد خوبی برخوردار می شوند و در این مسیر واضح است که سرعت هیدراسیون و گرمازائی نیز بیشتر می شود. بدیهی است در این را نباید بدنبال افزایش کارائی بتن با مواد فوق روان کننده بود وگرنه نتیجه چندان مطلوبی را در پی نخواهد داشت. این امر موجب افزایش مقاومت و دوام بتن در دراز مدت نیز می شود در حالی که با مصرف مواد زود سخت کننده (به غلظت ضدیخ) نمی توان چنین انتظاراتی را دنبال نمود. یخ زدن بتن پس از مدت حفاظت و عمل آوری ابدا" مشکلی را برای بتن هایی که بدین طریقه ساخته می شوند بوجود نمی آورد.

آیا می توان از میکروسیلیس به عنوان فیلر استفاده نمود ؟

میکروسیلیس Microsilica یا دوده سیلیسی Silica Fume از جمع آوری غبار فرآیند تولید مواد فروسیلیسی که از دودکش کوره این کارخانه ها خارج می شود بدست می آید که به صورت محصول دوغاب میکروسیلیس 50% در دسترس است. ذرات کروی بسیار ریز این غبار دارای قطر معمولا" 05/0 تا 25/0 میکرون (بطور متوسط 15/0 میکرون یا 150 نانومتر) می باشند. سیلیس آمورف موجود در این ذرات بیش از 85 درصد وزن آنها را تشکیل می دهد که می تواند به راحتی با آهک هیدراته یعنی هیدروکسید کلسیم یا 2 (COH)Ca در محیط مرطوب واکنش دهد و مواد چسباننده ای از نوع سیلیکات کلسیم هیدراته و شبیه C-S-H تولید کند. این ماده چسباننده به افزایش مقاومت و دوام بتن منجر می شود. میکروسیلیس یا دوده سیلیسی یک پوزولان مصنوعی با فعالیت پوزولانی چشمگیر محسوب می شود و نباید با پودر یا آرد سیلیس میکرونیزه اشتباه گردد. پودر یا گرد سیلیس یک پوزولان نیست، حتی اگر به شدت ریز و میکرونیزه شود. بنابراین واکنشی اتفاق نمی افتد و نقش یک فیلر یا پر کننده یا ماده پودری خنثی را بازی می کند. . البته میکروسیلیس یا دوده سیلیسی در بتن تازه می تواند نقش مواد پر کننده را ایفاء کند ولی نقش بعدی آن با پودر سیلیس به شدت متفاوت است . چنانچه دوده سیلیسی یا میکروسیلیس مصرفی در بتن بیش از 15 و در مواردی بیش از 20 درصد وزن سیمان باشد ممکن است همه آن در بتن هرگز وارد واکنش و تولید ماده چسباننده نشود و نقش فیلر یا پر کننده را باز می کند. نیاز به آب دوده سیلیسی یا میکروسیلیس در بتن برای ایجاد کارائی لازم چند برابر پودر سیلیس است و به دلیل ریزی و سطح ویژه فوق العاده آن و کلوخه یا گلوله شدن، نیاز به مقدار قابل توجهی فوق روان کننده یا فوق کاهنده آب دارد. در صورت استفاده از محصول دوغاب میکروسیلیس مشکل کلوخه شدن از بین رفته و میکروسیلیس به طور مناسب در بتن پخش می گردد.

چرا باید دوده سیلیسی را همراه با مواد افزودنی کاهنده آب بتن مصرف نمود؟

دوده سیلیس دارای سطح ویژه 000/150 تا 000/300 سانتی متر مربع در هر گرم می باشد که دلیل آن اندازه ذرات از حدود 05/0 تا 25/0 میکرون بنظر می رسد. با این سطح ویژه فوق العاده زیاد، نیاز به آب آن در مقایسه با سطح ویژه سیمان یعنی 2800 تا 4000 سانتی مترمربع یا با پودر و گرد سیلیس میکرونیزه یعنی 3000 تا 5000 سانتی متر مربع در هر گرم افزایش چشمگیری خواهد داشت. بنابراین بدون مصرف مواد کاهنده آب یا روان کننده راه بجائی نمی بریم و کارائی بتن با کاهش شدیدی روبرو می شود. اما چنین پودر ریزی در هنگام اختلاط با آب به شدت کلوخه می شود و لازم است به شدت هم زده شود و در حالت معمول برای اختلاط در بتن، لازم است از فوق روان کننده یا فوق کاهنده آب استفاده شود تا ذرات آن بتوانند بهتر از یکدیگر جدا و پراکنده شوند و بهتر واکنش دهند. تجربه ها نشان می دهد که روان کننده ها یا کاهنده های معمولی آب نمی توانند چندان مثمر ثمر واقع شوند و نیاز به فوق روان کننده وجود دارد.

کلوخه میکروسیلیس علاوه بر کاهش مقاومت فشاری و دوام و افزایش نفوذ پذیری می تواند به واکنش با قلیائی های سیمان و بتن منجر گردد و به تدریج ترک خوردگی ناشی از انبساط حاصل از این واکنش ها بوجود آید در حالیکه میکروسیلیس را می توان برای کاهش این نوع خرابی مصرف کرد به شرطی که بصورت کلوخه در نیاید. در صورت مصرف محصول دوغاب میکروسیلیس به جای پودر میکروسیلیس، میکروسیلیس به خوبی در بتن پخش شده و خطر کلوخه شدن وجود نخواهد داشت.

آیا می توان از دوده سیلیسی به عنوان ماده واترپروف استفاده نمود؟

دوده سیلیسی یا میکروسیلیس (محصول دوغاب میکروسیلیس) که در مجموعه ذرات بتن حضور پیدا می کند با ایجاد ماده چسبانده در اثر واکنش با هیدروکسید کلسیم، پرکننده نیز می باشد و تا حدودی از نفوذپذیری بتن به دلیل کاهش اندازه منافذ موئینه می کاهد. هم چنین کاهش نسبت آب به سیمان می تواند به نفوذ ناپذیری بتن کمک می کند. بکارگیری دوده سیلیسی به کاهش نفوذ و انتشار یون کلرید در بتن یاری می رساند اما نقش ماده آب بند کننده با ماده واترپروف بویژه از نوع دافع آب متفاوت است. نقش مواد پودری میکرونیزه یا مواد پرکننده غیر محلول در آب از این نظر شبیه به دوده سیلیسی با میکروسیلیس می باشد.

استفاده بیش از حد از مواد افزودنی کاهنده آب بتن چه عواقبی دارد؟

مصرف بیش از حد مواد افزودنی کاهنده آب یا روان کننده و هم چنین مواد فوق روان کننده یا فوق کاهنده آب برای ایجاد روانی یا کاهش نسبت آب به سیمان یا کاهش مصرف سیما می تواند به جداشدگی شدید، آب انداختن فوق العاده زیاد و هم چنین تاخیر زیاد در زمان گیرش اولیه و نهائی بتن منجر گردد، به نحوی که گاه 48 ساعت پس از ساخت، بتن به مرحله گیرش نهائی نمی رسد و بدیهی است کسب مقاومت فشاری به شدت به عقب می افتد. بهرحال در صورت وجود تبخیر زیاد از سطح بتنممکنست ترک خوردگی در سطح بتن تشدید شود. گاه تغییر رنگ قابل ملاحظه ای در بتن مشاهده می گردد اما دیده می شود که گهگاه پس از گذشت مدت قابل ملاحظه ای از ساخت بتن، مقاومت های بالنسبه خوبی حاصل می گردد اما معمولا" مشکلات اجرائی به کاهش کیفیت بتن و نشست خمیری کمک می کند که به نوع خود به ایجاد ترکهای ناشی از نشست خمیری در بتن منجر می شود.

آیا استفاده از ابر روان کننده می تواند هزینه های طرح اختلاط را کاهش دهد؟

ابر روان کننده واژه ای است که برای فوق روان کننده ای قوی و یا کاهنده های بسیار قوی بکار می رود و معمولا" پلی کربوکسیلاتها را در بر می گیرد. این مواد از جمله می تواند به کاهش 35 درصدی آب مورد نیاز بتن برای دستیابی به روانی معین منجر گردد و بدین ترتیب با چنین کاهش آبی، مقاومت بتن را بیش از 50 درصد افزایش می دهد.

کاهش قیمت بتن ( مواد اولیه) معمولا" وقتی می تواند اتفاق بیفتد که عیار سیمان مصرفی در بتن کاهش یابد بنابراین چنین امری با بکرگیری مواد روان کننده ، فوق روان کننده یا ابرروان کننده بعنوان کاهنده آب و در نتیجه آن کاهش عیار سیمان بتن می تواند محقق شود اما همواره کاهش عیار به کاهش قیمت یا هزینه تولید بتنمنجر نمی گردد. قیمت سیمان مصرفی، قیمت روان کننده مصرفی و قدرت کاهندگی آب و سیمان با توجه به میزان روان کننده بکار رفته برای این مهم در این رابطه می باشد. بنابراین همواره نمی توان چنین حکمی را صادر کرد.

بنظر می رسد در کشور ما با افزایش قیمت سیمان و کاهش تدریجی قیمت روان کننده ها از جمله ابر روان کننده ها، در طول سالهای گذشته گاه همه انواع روان کننده و گاه برخی از آنها امکان کاهش قیمت بتن با روانی ثابت و کاهش مصرف سیمان را فراهم آورده اند. به هر حال در برخی از برهه های زمانی ممکن است با افزایش قیمت روان کننده ها مواجه شویم و در این موضع تغییراتی ایجاد شود.

چنانچه قیمت حامل های انرژی در ایران به سطح موجود جهانی برسد و قیمت سوخت و برق و قیمتهای وابسته به آن بدون هرگونه یارانه ای باشد، قطعا" همه انواع روان کننده از جمله ابر روان کننده ها، کاهش قیمت بتن از طریق کاهش عیار سیمان را به بار می آورند. اگر روانی بتن ثابت در نظر گرفته نشود و نسبت آب به سیمان ثابت فرض شود، قطعا" قیمت بتن با مصرف انواع روان کننده افزایش خواهد یافت اما مشخص نیست که آیا قیمت اجرای بتن و سازه بتنی بالا می رود یا کاهش می یابد و این امر به نوع سازه و دستمزد افراد و هزینه بکارگیری وسایل تراکمی مربوط می شود.در کشورهای اروپایی و بسیاری از کشورهای پیشرفته مشخص شده است که افزایش شدید روانی و بکارگیری بتن خود تراکم به کاهش هزینه تمام شده سازه بتنی و بالا رفتن کیفیت آن منجر می شود. بنابراین در راه مصرف بر روان کننده ها تردیدی را بخود راه نمی دهند. امروزه با نسبت آب به سیمان کمتر و حتی با روانی برابر نیز ممکن است بدون کاهش مصرف سیمان با امکان پذیری دستیابی سریع به مقاومت های اولیه مورد نیاز، کاهش هزینه عمل آوری بویزه در هوای سرد و باز کردن سریع تر قالب ها، هزینه های اجرای سازه بتنی را کاهش داد. لازم است در این رابطه تحقیقات بیشتری در ایران انجام شود و جایگاه این مواد در پروژه های مختلف از نظر کاهش قیمت بتن یا کاهش قیمت سازه بتنی بررسی گردد.

تفاوت انواع مواد کاهنده آب در چیست؟

انواع مواد کاهنده آب یا روان کننده میتواند مربوط به قدرت کاهندگی یا روان کنندگی آن با توجه به میزان مصرف آن باشد. هم چنین با توجه به خنثی بودن، زودگیر یا کندگیر بودن این مواد، تقسیم بندی های خاصی بوجود می آید. امروزه قدرت حفظ روانی یکی از ویژگیهای این نوع افزودنی ها به حساب می آید. تفاوت در میزان مصرف و قیمت نیز موضوعیت دارد و تعیین کننده است.

برخی اوقات، قدرت حفظ انسجام و جلوگیری از جداشدگی اجزاء بتن می تواند به تفاوت گذاری در این مواد منجر گردد. روان کننده های معمولی بویژه از نوع لیگنوسولفوناتها حداکثر می تواند به کاهش 12 درصدی آب در بتن (با ثابت بودن روانی) منجر گردد. میزان مصرف این واحد در بتن بسته به میزان کاهش آب 5 تا 12 درصد، بین 2/0 تا 8/0 درصد وزن سیمان خواهد بود در حالیکه میزان مواد جامد آن بین 38 تا 42 درصد مایع آن باشد.

مسلما" تغییر در غلظت افزودنیهای روان کننده یا کاهنده آب به تغییر خواص و میزان مصرف آن منجر می گردد. فوق روان کننده هایی از نوع فرم آلدئید نفتالین سولفوناته فشرده با غلظت 33 تا 37 درصد ماده جامد با صرف 5/0 تا 2/1 درصد وزن سیمان، کاهش آب 12 تا 22 درصد را بدنبال دارد. بدیهی است مصرف کمتر، کاهندگی آب کمتری را خواهد داشت. فوق روان کننده هایی از نوع فرم آلدئید ملامین سولفوناته با غلظت حدود 30 تا 32 درصد ماده جامد و با مصرف 5/0 تا 5/2 درصد، کاهش آب حدود 12 تا 25 درصد را در پی دارد. مصرف کمتر مسلما" کاهندگی آب کمتری دارد.ابر روان کننده هایی از نوع پلی کربوکسیلاتها با میزان ماده جامد 40 تا 42 درصد و مصرف 3/0 تا 5/1 درصد وزن سیمان کاهش آب حدود 12 تا 35 درصد را به بار می آورد . بدیهی است در این مورد نیز با مصرف کمتر این مواد قدرت کاهندگی آن کاهش می یابد.

لیگنوسولفوناتها ذاتا" کندگیر هستند و می توان انواعی از آن با حالت خنثی تا خیلی دیرگیر را داشته و حفظ روانی آن نیز خوبست. مواد نفتالینی چندان کندگیر نیستند و انواعی از آن با حالت خنثی و دیرگیر تولید می شود اما حفظ روانی جالبی ندارد.

مواد ملامینی نسبتا" زودگیر هستند و انواعی از آن با حالت خنثی یا زودگیر ساخته می شود اما حفظ روانی متفاوت تولید می شود، کاهنده آب (روان کننده) معمولی خنثی (نوع A) حداقل قدرت کاهندگی آب 5 درصد، کاهنده آب دیرگیر (نوع D) با حداقل کاهندگی آب 5 درصد، کاهنده آب زودگیر (نوعE) با حداقل کاهندگی آب 5 درصد، فوق کاهندی آب (نوع F) با حداقل قدرت کاهندگی آب12 درصد، فوق کاهنده آب دیرگیر ( نوعG) با حداقل کاهندگی آب 12 درصد وجود دارد. اما در این استاندارد و سایر استانداردها، فوق کاهنده آب یا فوق روان کننده زودگیر فعلا" جایگاهی ندارد.

در استاندارد ASTM C1017، این مواد از نظر قدرت روان کنندگی بررسی می شود و دو نوع روان کننده یا فوق روان کننده یا بابر روان کننده از نظر خنثی بودن یا دیرگیری با شماره های I و ∏ مطرح می شود. در این استاندارد فرض شده است نسبت آب به سیمان مخلوط بتن ثابت می باشد و روان کنندگی آنها بررسی می گردد. در این استانداردها به قدرت حفظ روانی، هوازائی و موارد مشابه پرداخته نشده است. در استاندارد 2930 ایران و EN934، 7 نوع روان کننده یا کاهنده آب یا فوق روان کننده و فوق کاهنده آب از نوع خنثی، دیرگیر مطرح شده است که در آن روان کننده (با نسبت آب به سیمان برابر دیرگیر و زودگیر، فوق روان کننده (با نسبت اب به سیمان ثابت) جایگاهی ندارد. در این استاندارد به میزان هوازائی و گاه حفظ اسلامپ پرداخته شده است و در همه موارد میزان کاهش آب یا افزایش روانی مطرح گردیده است.

در چه مواردی از زودگیر بتن پودری و در چه مواردی از رودگیر بتن مایع استفاده می شود؟

بطور کلی استفاده ار افزودنی های مایع بهتر از بکارگیری نوع پودری آن (از یک جنس) می باشد زیرا عمل اختلاط به خوبی انجام می شود و همگنی حاصل می گردد. بنابراین استفاده از زودگیر مایع نیز ارجح است. اگر قرار باشد ماده زودگیر در پاشیدن بتن بکار رود، و بکارگیری روش تر مطرح باشد. مواد زودگیر اعم از پودری یا مایع در ساخت بتن می تواند بکار رود. در روش خشک، می توان مواد پودری را با مواد اولیه بتن ( سیمان و سنگدانه) مخلوط کرد. هم چنین می توان مواد زودگیر مایع را از طریق لوله آب به سر شیلنگی (افشانک) رسانید یا مواد پودری را در آب اختلاط حل نمود و بکار برد در صورتی حل مواد زودگیر امکان پذیر است که این مواد قابل حل باشد وگرنه تهیه زودگیر محلول میسر نیست. همه موارد فوق وقتی مطرح است که جنس مواد زودگیر پودری و مایع یکی باشد. در صورتیکه جنس آنها متفاوت باشد ممکن است تفاوتهای دیگری مطرح گردد

نویسنده : کلینیک  بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))


تاریخچه ژئوممبرین، کاربرد ها و انواع آن

 

ژئوممبران: PVC-

ژئوممبران pvc محصول عایق بندی است که با آماده کردن رزین (کلراید پنی دینیل) مواد پرکردنی ماده رنگ زنی به همراه تثبیت کننده ها وقراردادن آنها درمعرض عملیات های لازم درقالب ریزی ها و نیز بر اثر حرارت به صورت یک فرم متجانس تشکیل می شود.

انواع ژئوممبران PVC-

ژئوممبران مضرس دار

ژئوممبران ضد باکتری

ژئوممبران با ژئوتکستایل لمینت شده

ژئوممبران pvc - شکل T

مشخصات ژئوممبران PVC-

1-مقاومت شیمیایی

2-جوش پذیری

3-انعطاف پذیری

4-انبساط وانقباض نسبی زیاد

مقاومت دربرابر اشعه UV5-

موارد کاربرد ورق ژئوممبران: pvc-

1-مخازن آب وتصفیخانه ، حوضچه ها واستخر

2-پشت بام و بالکن

3-تونل های زیر زمینی

4-پارکینگ های اتومبیل زیر زمینی

5-مصرف زیر کاشی

مشخصات ژئوممبران: - مضرس دار

ژئوممبران pvc مضرس دار (signal lair ) ورقی است شامل یک لایه باریک وکمرنگ برای سهولت درتشخیص صدمات که به آسانی در صورت صدمه با دید بصری قابل تشخیص است.

ژئوممبران T- Grip-

- نگه دارنده بتن بر روی ورق ژئوممبران در شیب ها ودیوارها

- در سیستم های فاضلاب

- دور ستون ها ولوله ها

مزایا

در صورت بکارگیری این عایقها جهت پوشش و نفوذ ناپذیر کردن کانال بخشی از مزایای آن بشرح زیر میباشد:

1- سرعت اجرای زیاد و زودتر به بهره برداری رسیدن کانال

2- کاهش عملیات خاکی و افزایش سرعت آب و دبی کانال

3-حذف لایه فیلتر زهکش

4- حذف عملیات تعویض خاک

5- افزایش عمر مفید کانال به چندین برابر عمر کانال بتنی و عدم نیاز به ترمیم و نگهداری

الف- نتایج و بحث

هدف از اجرای پوشش ، جلوگیری از تلفات آب ، فرسایش خاک ، کاهش هزینه های نگهداری کانال و جلوگیری از رشد علفهای هرز می باشد.هزینه های اجرایی هر متر مربعپوشش بتنی و ژئوممبران - بتنی تقریبا" با یکدیگر برابر می باشد بنابراین در شرایط مشابه مزیت استفاده از پوشش ژئوممبران جلوگیری از هدر رفتن آب و یا راندمان بالاتر انتقال می باشد. استفاده ازاین پوششها ضمن اینکه ازاتلاف مایعات محلولهای شیمیائی موجود درکانالها جلوگیری بعمل می آورد بعلت برخورداری ازتائیدیه های زیست محیطی ازآلودگی منابع آب وخاک نیزجلوگیری بعمل می آورد ازسوی دیگر استفاده از HDPE بعنوان جایگزین لاینینگ بتنی ویا رسی ازتخریب کف ودیواره های کانال بعلت خورندگی خاکهای بستر جلوگیری نموده ودوام دهها ساله بدون نیازبه تعمیرات ویا تعویض خاک را درخاکهای نامناسب ازقبیل گچی ، آهکی ، سولفات و000 را تضمین می نماید. برای احداث کانال در حین مواجهه با خاکهای نامناسب دو راه حل وجود دارد :

1-تعویض خاک منطقه و جایگزینی با خاک مناسب

2-استفاده از پوشش های ژئو ممبران – بتنی .شایان توجه میباشد در اجرای این پوشش در صورت رعایت ننمودن موارد زیر نتایج نامطلوب حاصل میشود .

1- عدم اجرای صحیح ژئو ممبران و پوشش بتنی

2- عدم استفاده از محصول مناسب

3- نشست خاک

4- عدم دقت در کارگذاری ژئو ممبران

5-عدم مهار صحیح ژئو ممبران

6-استفاده از بتن مگر در زیر پوشش ژئوممبران

مهمترین بخش در مورد لایه ژئو ممبرین مربوط به درز گیری ها و جوش دادن صفحات ژئوممبرین در محل میباشد . چرا که اگر نشتی در این مکانها رخ دهد طرح کا ر آیی خود را از دست داده و اهداف مورد نظر بر آورده نخواهد شد . روی هم رفته در طرحهای اجرا شده با ژئوممبرین حدود 15% صرفه جویی اقتصادی نسبت به طر ح های دیگر که از ژئو ممبرین استفاده نمی کنند میشود .

ژئوممبران‌ها

خصوصیات لازم یک ژئوممبران برای استفاده در دیوار آب بند به شرح زیر است:

- سختی بالا برای آسانی نصب

- مقاومت بالا در مقابل انواع مواد شیمیایی که شامل حلال‌های آلی نیز می‌باشد

- امکان نصب پروفیل‌های قفل و بست روی لبه صفحات ژئوممبران

- دوام مناسب در حالت مدفون

HDPE برای اکثر موارد بالا انتخاب مناسبی است. این ماده سختی کافی ندارد تا بتوان آن را مثل صفحه فولادی مستقیماً به داخل خاک راند ولی همانگونه که توضیح داده شده راه های زیادی برای نصب آن وجود دارد. وقتی که هزینه و در دسترس بودن آن نیز مد نظر قرار گیرد دیده می‌شود که در این نوع کاربرد انتخاب طبیعی می‌باشد. دلیل دیگر برای انتخاب HDPE قابلیتشکل یافتن آن توسط عملیات اکستروژن است.قفل و بست‌ها شکل‌های پیچیده ای دارند که توسط فرآیند اکستروژن ساخته می‌شوند و سپس به طول مورد نظر بریده شده و به پانل‌های ژئوممبران جوش امتزاجی داده می‌شوند. اکنون به عملکرد HDPE

در حالت مدفون در دراز مدت پرداخته می‌شود. غیر از تنش که ممکن است منجر به ایجاد ترک در مواردی شود عوامل کمی می‌توانند عمر ژئوممبران HDPE را در حالت مدفون کوتاه کنند یکی از آنها قرار گرفتن د رمعرض مواد شیمیای است. تا کنون صدها آزمایش سازگاری طبق استاندارد9090EPA بر روی HDPE با انواع مواد شیمیایی انجام گرفته است که در هیچ یک از این آزمایش‌ها تخریب مشاهده نشده است.

در مورد هیدروکربنها با غلظت زیاد (هیدروکربن‌های کلرینه و آروماتیک نامطلوبترین آنها هستند) کاهش مقاومت حد تسلیم کششی تا 30% می‌تواند رخ دهد. این به خاطر روان شدگی فیزیکی است که HDPE را نرم می‌کند. البته این واکنش قابل برگشت است، یعنی زمانی که اجازه خروج به مواد شیمیایی داده شود، مقاومت اولیه باز می‌گردد.

یکی از مهمترین خصوصیات دیوارهای آب‌بند، نفوذناپذیری در مقابل مواد شیمیایی است. لازم است نفوذپذیری شیمیایی ژئوممبران از نفوذپذیری که معمولاًدر مهندسی ژئوتکنیک به آن اشاره می‌شود متمایز شود. در حالت خاک‌ها و سایر مواد متخلخل، انتقال آب (یا سایر مواد شیمیایی) از حفرات خاک، ترکها یا شکستگیها رخ می‌دهد. در صورتی که در نفوذپذیری شیمیایی، ماده شیمیایی از یک غشا غیر متخلخل در سطح مولکولی عبور خواهد کرد. مولکولهای می‌توانند به طریقی خود را از بین زنجیرهای پلیمری عبور دهند.

HDEP یک ماده پلاستیک نیمه بلوری است که آن را د رمقابل نفوذپذیری شیمیایی مقاوم می‌سازد. باید دانست که هیچ پلیمری نسبت به مواد شیمیایی کاملاً عایق نیست همیشه مقداری تراوش رخ می‌دهد. سوال اساسی این است که آیا مقدار نفوذپذیری قابل قبول است یا خیر.

عوامل زیادی در مقدار نفوذپذیری شیمیایی ژئوممبران تاثیر می‌گذارد. این عوامل شامل تمرکز شیمیایی، دما و ضخامت ورق است. نفوذپذیری دو مولفه عمده دارد که شامل نرخ انتشار (Diffusivity) و انحلال‌پذیری است. نرخ انتشار، نرخ انتقال یک ماده شیمیایی از یک مانع است. انحلال‌پذیری مقدار ماده شیمیایی که یک مانع می‌تواند نگهداری کند. بنابراین نفوذپذیری مربوط به مقدار حجم زاید یک پلمیر و سازگاری ماده شیمیایی با ژئوممبران است. در واقع، نفوذپذیری مرتبط با این است که چه مقدار ماده شیمیایی می‌تواند توسط غشا جذب شود و سرعتی که ماده شیمیایی از مانع عبور می‌کند. بنابرین غلظت، دما و ضخامت ژئوممبران بر مقدار نفوذپذیری تاثیر می‌گذارد.

نکات اجرایی در استفاده از ژئوممبرین ها

1-جهت استفاده از ژئوممبرین ها در سطوح شیبدار و یا قائم و جاهایی که امکان لغزش و جود دارد از نوعی ژئوممبرین استفاده می شود که بر روی سطح ان برجستگی هایی به شکل میخ و جود دارد این میخچه ها در آستر زیر فرو رفتهدو مانع از لغزش لایه ژئوممبرین میزشود.

2-در هنگام نصب ژئوممبرین باید کاملا" توجه داشت که از هر گونه خراش بر سطح آن جلوگیری شود خراش های سطحی به شکل قابل توجهی موجب کاهش مقاومت می شوند.

3-ژئوممبرین بصورت لوله ای و تخته ای ذر بازار عرضه می شود . گاهی برای سطوح وسیع مجبور به چسباندن چند لایه ژئوممبرین می باشیم. برای چسباندن ژئوممبریندر خارج از کارخانه ودر محل کارگاه معمولا" از چسب های مخصوص استفاده می شود. گاهی نیز جهت چسباندن دو لایه ژئوممبرین از ماده حلالی که موجب حل شدن دو لایه مجاور در هم می شود استفاده می گردد.

ژئوممبران

. ژئو ممبرانها اساساً ورقه های نازک و نفوذ ناپذیری هستند که از مواد لاستیکی یا پلاستیکی ساخته میشوند و عمدتآً برای آستر کاری و پوشش تأ سیسات ذخیره مایعات و گازها به کار میروند.ژئوممبرین ها دسته ای از خانواده ژئوسنتیتیک ها هستند که به شکل قابل ملاحظه ای نفوذ ناپذیرند . ماده اصلی تشکیل دهنده ژئوممبرین ها پلیمرهای مصنوعی اند و مهمترین نقش آنها به عنوان ماده ای محافظ در برابر عبور سیالات می باشد.کاربرد وسیع ژئوممبرین ها وابسته به خواص فوق العاده آنها نسبت به وزنشان می باشد.از مشخصات بارز این عایقها می توان به مقاومتهای کششی ، پارگی ، سوراخ شدگی بسیار بالای آنها اشاره نمود.درصد ازدیاد طول این عایقها تا بیش از 7 برابر طول اولیه آنها می باشد. همچنین نفوذ ناپذیری ، انعطاف پذیری توام با مقاومت بالادربرابرپاره شدگی و سوراخ شدگی و تغییرات بالای دمای اطراف ، مقاومت در برا برمواد شیمیایی ، سبک بودن و نصب سریع آنها است. ژئوممبران دارای طبیعت پلیمری هستند و به این دلیل در مقایسه با خاکهای رسی و ژئو تکستایل ها نفوذ ناپذیر تر می باشند ، آزمایشهای عبور خاک آب ، ضریب نفوذ پذیری آنها m/s 15- 10*2.7 نشان داده است .

بعضی از کاربردهای ژئوممبراین در پرو ژه های عمرانی

ژئوممبران‌ها به‌عنوان یک عایق بسیار مقاوم و کمهزینه و دارای طول عمر زیاد، در بسیاری از صنایع کاربرد دارد. این عایقها در کانالها کاربردهای فراوانی دارند خصوصا" در کانالهایی که از خاکهای واگرا ، گچی ، تورمی ، رمبنده و... عبور مینماید و یا با مشکل آبندی روبرو باشند ، استفاده از این عایقها در مقابل liningبتنی میتواند بعنوان گزینه مناسبی مورد نظر قرارگیرد.، انعطاف پذیری بالای این عایقها ، اجرای آسان که پیشرفت نصب ان معادل 5000 m2 در روز ، عدم نیاز به نگهداری و تعمیرات در طول دوره کارکرد و نیز افزایش قابل توجه سرعت حرکت اب و دبی کانال بعلت تفاوت ضریب زبری بتن با HDPE و امکان استفاده از آنها به صورت روباز از جمله دلایل استقبال جهانی از آن در پروژه ها میباشد. که از آن جملهمی‌‌توان به موارد زیر اشاره نمود:

- از جمله مهمترین کاربردهای ژئوممبراین کاربرد به عنوان آستر و محافظ می باشد که عمدتا" در سطوح داخلی کانال ها ، مخازن و لوله های آبرسانی مورد استفاده قرار می گیرد.مقاومت بالای ژئوممبرین در برابر سایش مانع از سائیدنه شدن سطوح این تاسیسات می شود. همچنین می توان از تاثیرات منفی فاضلاب بر روی سطوح تاسیسات مربوطه با نصب لایه ژئوممبرین بر روی آنها جلوگیری نمود. جهت حفاظت سازه های بتنی ذر بربر حملات شیمیایی خورنده محیط اطراف نیز می توان از ژئوممبرین استفاده نمود

- جهت آبندی جدار تونل ها همواره از ترکیبی از ژئوممبرین و ژئوتکستایل که در واقع تشکیل یک ژئوکمپوزیت را می دهند استفاده می گردد. در این کاربرد یک لایه از ژئو تکستایل را جهت زهکشی آب به سطح تونل می چسبانند و سپس بر روی آن یک لایه ژئوممبرین راجهت جلوگیری از نفوذ آب قرار می دهند و سپس نمای بنای نهایی را اجرا می کنند.

- جهت کنترل خاک هایی که بر اثر رطوبت که براثر رطوبت متورم می شوند از ژئوممبرین با قدرت نفوذ ناپذیری بالا استفاده می شود

- در تاسیساتی که قدرت کنترل مطلوب آب را جهت جلوگیری از اتلاف آن را ندارند نیز از ژئوممبرین به عنوان لایه محافظ در برابر خروج آب استفاده می شود و به شکل قابل توجهی از هدر رفتن آب جلوگیری می شود.

- آب و فاضلاب: از ژئوممبران‌ها جهت ساختلاگون‌ها، کانال‌های آبرسانی، حوضچه‌ها و استخرها و دریاچه‌های مصنوعی استفادهمی‌‌شود. با توجه به اینکه ژئوممبران در تماس با خاک هستند، برحسب لزوم امکان ترکیبآنها با ژئوتکستایل و یا ژئوگریدها میسر است.

- ایزولاسیون سازه‌های زیرزمینی در برابر نفوذ آبهای سطحی و زیرزمینی: در اینخصوص می‌‌توان به ایزوله دیوارهای متروهای شهری و سازه‌های هیدرولیکی و غیره اشارهنمود.

- سایت دفن زباله شهری و صنعتی و خطرناک: با استفاده از ژئوممبرانمی‌‌توان مخازن کاملاً ایزوله از محیط اطراف، جهت دفن زباله‌های شهری و صنعتی ایجادنمود. ژئوممبران‌ها دارای انواع فراوانی، به لحاظ مقاومت در برابر مواد شیمیایی ومخرب هستند.

- سد سازی و پل سازی ،ساخت سیل بند ها و جلو گیری از فرسایش

- مقاوم سازی بستر رودخانه ها و زهکشی قائم و فیلتراسیون ،اجرا شیبهای خاکی و دیوارهای حائل

- تصفیه خانه ها و حوضچه های مصنوعی ، استخر ها و سازه های زیر زمینی

- دورلوله هایی که به دلایلی باید درون آب باشند وصدها کاربرددیگر درصنعت وکشاورزی وآبیاری وغیره دارد0

همچنین ازژئوممبران برای جداکننده بین موج شکنهای کنار دریاها ازساحل آن استفاده میشود( دربندرامام نیزبه همین دلیل جلوگیری ازنفوذ آب دریا به جاده های کنار ساحل ازژئوممبران استفاده شده است ) زیرا ژئوممبرانها مقاومت بسیارزیادی دربرابرفشاروپارگی دارند بطوری که میتوان درحین اجرای ژئوممبران ، باوسایل سنگین ازجمله بولدوزر روی آن تردد نمود.

1-انعطاف پذیر و غیر قابل نفوذ در برابر آب

2-حفظ خاصیت نفوذ ناپذیری در تمام طول عمر

3-امکان افزایش طول تا 7 برابر طول اولیه

4-مقاوم در برابر اشعه ماورای بنفش خورشید

5-گستره وسیع تحمل دمایی از 40- تا 70+ درجه سانتی گراد

6-عدم شرکت در واکنش های شیمیایی به علت دارا بودن آنتی اکسیدان

7-مقاوم در برابر انواع مواد شیمیایی نظیر اسیدها ،بازها و نمک ها

8-مقاوم در برابر عوامل محیطی و بیولوژیکی نظیر رویش نی ،علف هرز ،جانوران جونده ،باکتری ها و جلبک ها

* یک سوم هزینه بتن

* یک سوم زمان ساخت نسبت به بتن

* نصب هر هزار متر در 48 ساعت

* ده سال گارانتی

* احداث استخرهای ذخیره آب جهت کشاورزی

* پوشش کانالها و نهرهای آبیاری و آبرسانی

* مخازن دفع زبالهای شهری ،صنعتی و بیمارستانی

* پوشش حوضچه های تصفیه آب و فاضلاب شهری و صنعتی

* پوشش لوله و تونلهای بتنی

* ایزولاسیون منابع زیر زمینی و غیره

 

نویسنده : کلینیک بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 


تست های غیرمخرب ( التراسونیک )

دستگاه Ultrasonic : دستگاهی است که امواجی با فرکانس خیلی بالا تولید می کند که فرکانسش بیشتر از آستانه شنوایی است .(In fra sound 20 -20 .000 Hz) و فرکانس در ultrasonic test معادلMHz 0.5 - 10 می باشد .

 این دستگاه قادر است عیوب یا ناپیوستگی های ریز که معادل نصف طول موجش است را نشان دهد .

نصف طول موج = ناپیوستگی های قابل تشخیص در UT .

در مقابل ترنس ویوسر دستگاه 3 ناحیه وجود دارد :

    Far field
    Near field
    Dead zone

• منطقه Near zone مکانی است که اگر ناپیوستگی ها در این منطقه قرار گیرند بصورت واضح و دقیق توسط دستگاه قابل تشخیص نمی باشد ( و این یکی از معایب روشUT می باشد ) .

 

• منطقه Far field or Far zone منطقه ای است که عیوب با دقت بالایی قابل تشخیص می باشند در این منطقه صوت حالت واگرایی دارد که این زاویه واگرایی به عواملی چون طول موج و قطر کریستال پراب و فرکانس وابسته می باشد که با طول موج رابطه مستقیم و با فرکانس و قطر کریستال پراب رابطه معکوس دارد .

 

توضیحاتی درباره پراب ها و دستگاههای ultrasonic

دستگاههای آنالوگ و دیجیتال و پراب های Angle و Normal :

دستگاههای به دوصورت تقسیم می شوند :

    آنالوگ : در صنعت کاربرد چندانی ندارند بدلیل آنکه سرعت کارکردن با دستگاه کم است . ازاین دستگاه بیشتردرآموزشهای Ultrasonic testing و کارهای آزمایشگاهی استفاده می شود .
    دیجیتال : بدلیل راحت و آسان بودن سیستم دستگاه و سرعت بالا برای کار, از این نوع دستگاه در صنعت استفاده می شود .

انواع پراب ها

 

    Angle ( پراب های زاویه دار ) : اغلب استفاده این پراب در تست و بازرسی جوش است .
    Normal ( پراب های نرمال ) : اغلب استفاده این پراب ها برای تست و بازرسی سطوح است و برای تست جوش استفاده نمی شود .

 

Pulse - Echo ( برگشت صوت ) : در این روش تنها یک پراب استفاده می شود که هم فرستنده و هم گیرنده صوت است .

Through Transmissian ( انتقال صوت ) : در این روش 2 پراب استفاده می شود که یکی فرستنده و دیگری گیرنده صوت است .

نوع انتقال صوت در پراب ها به دو صورت است :

• پالس کوتاه Short pulse 

• موج متوالی Continuous wave

 

بلوکهای مرجع برای کالیبراسیون پراب های Normal و Angle

در روش ultrasonic testing

بلوک های مرجع (Reference block)

    بلوک V1 یا ll W .
    بلوک V2 یا Az .

- از این بلوک ها در کالیبراسیون پراب های Angle , Normal استفاده می شود . 

- ضخامت های این بلوک ها متفاوت است مثلا بلوک V2 دارای ضخامت هایی چون 12mm , 20mm است و ضخامت بلوک V1 معادل 25mm است . 

- شعاع کرو در بلوک 25mm , 50 mm V2 است .

که 25mm شعاع کرو کوچک و 50mm شعاع کرو بزرگ است .

- شعاع کرو در بلوک V1 معادل 100mm است .

 

روشهای test و بازرسی قطعات توسط دستگاههای ultrasonic

روش تماسی Contact testing

    در روش تست تماسی ترنس دیوسر مستقیم روی نقطه تحت تست قرار می گیرد چون دانسیته هوا کم است یک نوع عایق صوتی به حساب می آید و بخاطر همین از موادی چون : گریس - روغن - آب و ... دربین اتصال ترنس دیوسر با قطعه استفاده می شود .

روش غوطه وری Immersian testing

    در روش غوطه وری قطعه تحت تست و ترنس دیوسرهردو در داخل یک تانک که از آب پشده قرار می گیرد . در این روش سرعت تست بالا است و اغلب در جاهایی که سرعت کار مهم است از این روش استفاده می کنیم .

آیتم های مهم در ultrasonic 

1 - کالیبراسیون فاصله پراب نرمال ( Normal ) 

2 - کالیبراسیون فاصله برای پراب زاویه دار (Angle )

3 - تعیین شاخص پراب

4 - تعیین زاویه پراب 

5 - تعیین محل SDH روی بلوک مرجع 

6 - قدرت تفکیک resolution 

7 - Amplitud control lineritiy 

8 - screen light lineritiy 

9 - منحنی DAC 

10 - ضخامت مولد 

11 - زاویه انحراف 

12 - خطی بودن محور افقی 

استانداردهای مورد استفاده در Ultrasonic testing

استانداردهای کاربردی در NDT و جوشکاری

    AWS A1.1 : راهنمای سیستم های اندازه گیری متریک در صنایع جوشکاری .
    AWS A2.4 :استاندارد علائم و نشانه هادر جوشکاری , لحیم کاری و تست های غیر مخرب .
    AWS A3.0 : استاندارد واژه ها و اصطلاحات جوشکاری .
    AWS B1.10 : راهنمای بازرسی غیر مخرب جوش .
    AWS B1.11 : راهنمای بازرسی چشمی جوش .
    ANSI Z49.1 : ایمنی در جوشکاری , برشکاری و فرآیندهای وابسته .
    AWS QC1 : استاندارد AWS برای تایید صلاحیت بازرسین جوش .
    AWS D1.1 : کد ساخت سازه های فولادی جوشکاری شده .
    AWS D1.5 : استاندارد ساخت پل های فلزی جوشکاری شده .
    AWS D15.1 : استاندارد جوشکاری راه آهن و لوکوموتیو .
    AWS B5.11 : استاندارد تایید صلاحیت مفسرین رادیوگرافی .
    SNT - TC - 1A : راهنمای تایید صلاحیت پرسنل NDT که توسط انجمن آزمایشات غیر مخرب آمریکا تهیه شده است .

SNRT-9- 24A : استفاده از دستگاه التراسونیک برای تست غیر مخرب بتن که توسط آن سیگنال فرستاده می شود و از جهت دیگر بتون گیرنده آن را دریافت کرده و دیتا ها را به ما خواهد داد.جهت تست های غیر مخرب، عمق ترک و مقاومت به چند شیوه انجام پذیر می باشد.

نویسنده : کلینیک  بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 


بررسی نفوذپذیری بتن در برابر گاز اکسیژن به عنوان یکی از شاخصه ها

 

ضریب نفوذ پذیرى بتن مشخصه‏اى از بتن است که بوسیله آن مى‏توان اطلاعات مناسبى از ریز ساختار و کیفیت بتن بدست آورد. با توجه به اینکه در مطالعات مربوط بهپایائى بتن نظیر بررسى پایائى بتن در برابر نفوذ یون کلر و حملات سولفاتى، در اغلب موارد سیال مهاجم از خارج بتن به داخل بتن نفوذ مى‏کند، بنابراین میزان نفوذ پذیرى، قابلیت بتن را براى سهولت و یا صعوبت ورود سیال به داخل محیط متخلخل بتن مشخص مى‏نماید. به این ترتیب در بسیارى از منابع معتبر "نفوذ پذیرى به عنوان کلیدپایائى بتن قلمداد شده است.

در سازه ‏هاى بتنى، بتن پوشش سطحى در اولویت نخست، از خوردگی آرماتورها حفاظت مى‏کند. بنابراین از دیدگاه خوردگى آرماتور این منطقه سطحى در معرض نفوذ گاز اکسیژن، گاز کربنیک و آب قرار دارد. نفوذ دو سیال گاز کربنیک و آب ریز ساختار بتن را تـغییر مى‏دهد و بنابرایـن این‏دو براى انـجام آزمایش قابل تکرار مناسب نیستند. به این جهت است که به نظر مى‏رسد گاز اکسیژن براى انجام آزمایش نفوذ پذیرى بتن مناسب‏ترین سیال باشد.

در مبحث مربوط به خوردگى آرماتور در بتن و در تشکیل پیل الکتروشیمیایى، وجود اکسیژن براى تشکیل پروسه کاتد ضرورى است. همچنین روند خوردگى از دو مرحله شروع خوردگى و گسترش خوردگى تشکیل مى‏شود. براساس تحقیقات انجام شده نفوذ اکسیژن در مرحله گسترش خوردگى آرماتور در بتن اهمیت دارد.

غیر قابل نفوذ بودن بتن همچنین در رابطه با آب بندی مخازن مایعات و گازها، راکتورهای اتمی و مخازن فاضلاب و تصفیه گاز مورد توجه می باشد و الزامات معمول آن است که بتن باید از نفوذ هوا تحت فشار داخلی معینی جلوگیری نماید. همچنین نفوذ گاز در بتن با مسائل فشار هیدرواستاتیکی و داخل سدها نیز مورد توجه می باشد. از طرف دیگر اندازه گیری ضریب نفوذپذیری بتن در برابر گاز نیز مزایایی دارد که از جمله این موارد می توان به سریع بودن انجام آزمایش و عدم تغییر شرایط آزمونه در زمان انجام آزمایش اشاره نمود.

نفوذ پذیرى یک ویژگى ریز ساختارى بتن است که میزان قابلیت بتن را براى عبور سیالى با ویسکوزیته مشخص تحت گرادیان فشار نشان مى‏دهد.

قانون Darcy(1856) داراى فرم ساده زیر مى‏باشد و رابطه بین سرعت حرکت سیال و گرادیان فشار را نشان مى‏دهد:

v=Kv.i

:v سرعت خطى ظاهرى سیال (v=Q/A)(m/s)

:Kv ضریب نفوذ پذیرى دارسى (m/s)

:i گرادیان هیدرولیکى، افت فشار (بدون بعد(

حرکت سیالات از درون بتن از طریق منافذ موئینه و یا ناحیه مرزی بین ماتریس و سنگدانه صورت می گیرد. این در حالیست که به دلیلی کوچکی بسیار زیاد منافذ ژلی، عملا امکان عبور سیال از آن وجود ندارد.

یکی از مهمترین پارامترهایی که بر تخلخل بتن تاثیر می گذارد، نسبت آب به سیمان است. تاثیر نسبت آب به سیمان بر اندازه حفرات و تخلخل بتن در شکل زیر آورده شده است. باید متذکر گردید که نفوذ پذیری بتن تنها تابعی از تخلخل آن نمی باشد، بلکه به اندازه، توزیع و پیوستگی منافذ نیز بستگی دارد.

2) ساز و کارهای حرکت سیال در داخل بتن

سیال به یکی از روش های زیر درون سیال حرکت می کند :

1- جذب سطحی (Adsorption)

2- انتشار (Diffusion)

3- مکش موئینه (Absorption)

4- نفوذپذیری (Permeability)

هر یک از پدیده های نفوذ یون کلر،کربناتاسیون، حملات سولفاتی و انهدام ناشی از سیکل ذوب و یخ در بتن با توجه به یکی از مکانیزم های فوق یا ترکیبی از آن ها صورت می پذیرد.

3) روش های اندازه گیری ضریب نفوذپذیری بتن در برابر گاز

تا کنون روش های مختلفی برای اندازه گیری ضریب نفوذپذیری بتن در برابر گاز توسط محققین پیشنهاد شده است. این روش ها عموما به دو دسته، آزمایشهای نفوذپذیری گاز با اختلاف فشار ثابت و آزمایش های نفوذپذیری گاز با افت فشار (فشار کاهنده) تقسیم بندی می شوند. روش های اندازه گیری ضریب نفوذپذیری گاز با اختلاف فشار ثابت عبارتند از :

1- توصیه CEMBUREAU (توصیه انجمن سیمان اروپا)، این روش مورد تائید کمیته RILEM TC 116-PCD می باشد و در استاندارد ملی ایتالیاUNI با کد 58-E0031 آورده شده است.

2- توصیه AFGC-AFREM(انجمن مهندسی عمران فرانسه)

3- روش LNEC E-392 یا توصیه ملی پرتغال؛ این توصیه نامه استفاده از نفوذسنج تهیه شده توسط پروفسور Cabrera را که در سال 1999 میلادی در دانشگاه Leeds ساخته شده توصیه می کند.

4- روش انستیتو نفت فرانسه؛ در دانشگاه Sherbrooke کانادا و آزمایشگاه پایایی و مصالح ساختمانی تولوز فرانسه (LMDC) که تحقیقات گسترده ای را بر روی نفودپذیری گاز انجام داده اند, از این روش استفاده شده است.

5- استاندارد امریکایی ASTM D 4525-90؛ این روش که برای تعیین نفوذپذیری سنگ در برابر نفوذ گاز ارائه شده است برای سنجش نفوذپذیری بتن نیز قابل استفاده است.

همچنین روش های اندازه گیری ضریب نفوذپذیری گاز با افت فشار عبارتند از:

1- آزمایش های مکش در سوراخ دریل شده در سطح بتن

2- آزمایش های وارد کردن فشار در سوراخ دریل شده در سطح بتن

3- آزمایش های مکش سطحی

4- آزمایش های وارد آوردن فشار سطحی

4) توضیح دستگاه اندازه‏گیرى نفوذ پذیرى بتن در برابر گاز اکسیژن، توصیه AFPC-AFREM,Cembureau

دستگاه اندازه‏گیرى نفوذ پذیرى بتن در برابر اکسیژن که براساس دبى خروجى گاز اکـسیژن از نـمونه بتنى مـى‏باشد، براساس توصیه Cembureau و AFREM - AFPC ساخته شده است. این دستگاه در حال حاضر در مراکز تحقیقاتى بتن در بسیارى از کشورهاى اروپایى وجود دارد و در پروژه‏هاى تحقیقاتى و مشاوره‏اى خصوصاً در سازه‏هاى آبى و همچنین سازه‏هاى در معرض عوامل خورنده محیطى مورد استفاده قرار مى‏گیرد.

4-1) شرح اجزاى دستگاه نفوذ هوا و شکل شماتیک آن

این دستگاه وسیله‏اى براى اندازه‏گیرى دبى اکسیژن است که شامل قطعات زیر مى‏باشد:

- شیر تنظیم فشار تنظیم کننده فشار ورودى سلول

- لوله‏هاى شیشه‏اى با حجم‏هاى مختلف (160 و 20 و 5 و 2 میلى لیتر(

- سلول انجام آزمایش که خود شامل پنج بخش مى‏باشد: 1- محفظه آلومینیومى 2- دو صفحه پخش کننده هوا براى کسب اطمینان از عبور اکسیژن از تمام سطح قطعه بتنى 3- غشاى پلى اورتان به دور دیسک بتنى -4تیوپ هوا 5 - درپوش

ضمناً براى انجام آزمایش از دو کپسول بزرگ مایع استفاده میگردد:

-1 کپسول اکسیژن براى تأمین گاز عبورى از آزمونه

-2 کپسول ازت براى باد کردن تیوپ به دور دیسک بتنى تا فشار حداکثر 12 اتمسفر

4-2) مشخصات آزمونه

آزمونه‏ها با توجه به حداکثر بعد سنگدانه موجود در بتن به صورت قطعاتى با قطر 15 سانتیمتر و ضخامت 50 یا 65 میلیمتر تهیه مى‏شوند. ضخامت نمونه باید از 2/5 برابر حداکثر بعد سنگدانه بزرگتر باشد. بعد بزرگترین سنگدانه تا 25 میلیمتر توصیه شده است . براى تهیه این دیسکهاى بتنى باید نمونه‏هاى استوانه‏اى استاندارد (استوانه‏هاى با قطر 15 سانتیمتر و ارتفاع 30 سانتیمتر) را با ضخامت مورد نیاز برش زده و سپس با تهیه حداقل 3 دیسک بتنى از یک نمونه استوانه‏اى استاندارد، آزمایش را بر روى هر سه نمونه به صورت متوالى انجام داد.

چنانچه از مغزه‏هاى کرگیرى شده براى انجام آزمایش استفاده شود باید مطمئن بود که نمونه تهیه شده ترک خورده و آسیب دیده نباشد. چنانچه قطر و یا ارتفاع مغزه از مقادیر گفته شده قبلى کمتر باشد مى‏توان با استفاده از رزین غیر قابل نفوذ براى جبران کمبود قطر و یا جدا کننده (براى جبران کمبود ارتفاع) استفاده کرد. البته در تحلیل نتایج بدست آمده باید دقت زیادى نمود.

این روش براى بتن‏هاى با عـیار سیـمان حـدود 200 تـا kg/m3 450و مقادیر ضریب نـفوذ پذیرى در برابر اکسیژن بین10-19 m2 تا10-14m2 نتایج قابل قبولى مى‏دهد..

5) رابطه ضرایب نفوذ پذیرى بتن در برابر آب و در برابر گاز اکسیژن

اندازه‏گیرى ضریب نفوذ پذیرى بتن در برابر آب از سالها پیش در کشورمان متداول بوده است و خصوصاً در پروژه‏هاى سد سازى مورد کاربرد قرار گرفته است. در عین حال در ساختمانهاى معمول، بتن سطحى که حفاظت آرماتورها را بر عهده دارد در معرض نفوذ اکسیژن، گاز کربنیک و آب قرار دارد. عملاً انجام آزمایش نفوذ پذیرى با گاز اکسیژن از دو سیال دیگر ساده‏تر و قابل تکرارتر است و این گاز واکنشى هم با محیط بتن نخواهد داد.

چنانچه مقادیر محاسبه شده براى ضرائب نفوذ پذیرى آب و گاز بر حسب m2 ضریب نفوذ پذیرى واقعى بتن بود باید این مقادیر یکسان باشند ولى عملاً ضریب نفوذ پذیرى در برابر گاز بزرگتر است و براى بتن‏هاى با ضریب نفوذ پذیرى کم این اختلاف زیادتر است.

اختلاف بین ضرائب نفوذ پذیرى بتن در برابر گاز و آب را مى‏توان به موارد زیر نسبت داد:

-1 فعل و انفعال شیمیایى آب با سیمان موجب دوباره هیدراته شدن ذرات سیمان هیدراته نشده مى‏شود و انحلال، ته نشینى و جابجائى ذرات ریز و جذب آب در تخلخل‏هاى کوچک ماتریس سیمان موجب کاهش نفوذ پذیرى مى‏گردد.

-2 اثرklinkenberg و یا تئورى لغزش گازها، براساس این تئورى گاز نزدیک به دیواره موئینه یک سرعت حدى دارد و بنابراین کمیت جریان گاز از طریق موئینه‏ها بیش از مقدارى است که با قانون Poiseuille پیش بینى شده است. همچنین این اثر زمانى پدید مى‏آید که مسیر آزاد در مولـکولهاى گـاز نسبت به قطر منافذ موئینه به قدر کافى بزرگ باشد. میزان اثر Klinkenberg به توزیع اندازه تخلخل‏ها و مقدار متوسط فشار آزمایشى دارد. این اثر وقتى که فشار آزمایش زیاد باشد کمتر مى‏شود. البته این اثر تا حدود کمى اختلاف بین دو ضریب نفوذ پذیرى را توجیه مى‏کند.

در اندازه‏گیرى ضریب نفوذ پذیرى ذاتى مصالح، مقادیر بدست آمده براساس آزمایش با آب به نحو بهترى ریز ساختار بتن را نشان مى‏دهد. براى اندازه‏گیرى ضریب نفوذ پذیرى بتن در برابر گاز که به مقادیر ضریب نفوذ پذیرى ذاتى نزدیکتر باشد باید از فشارهاى زیاد استفاده کرد. در شکل زیر رابطه بین ضرائب نفوذپذیرى نشان داده شده است.

اختلاف بین ضرایب نفوذ پذیرى بتن در برابر گاز و مایع براى بتن‏هاى با ضریب نفوذ پذیرى کم، زیادتر است. براى یک بتن متداول سازه‏اى که ضریب نفوذ پذیرى آن در برابر آب حدود 10-18 m2است، ضریب نفوذ پذیرى در برابر گاز براى فشار حدود 6 اتمسفر ممکن است 100 برابر زیادتر باشد. نتـایج بـدست آمـده از آزمایشها بـراى بـتن معمولى نسبت‏هاى کوچکتر از 100 را نشان مى‏دهد.

روابط زیر براى بدست آوردن ضریب نفوذپذیرى در برابرآب(Kl)با داشتن ضریب نفوذپذیرى در برابر گاز Kg بکار مى‏رود. kl=kg/(1+b/pm)

b از رابطه زیر قابل محاسبه است:

در بسیاری از کشورها، ضریب نفوذپذیری بتن در برابر گاز اکسیژن به عنوان یک از معیارهای پذیرش پایایی بتن شناخته می شود. به عنوان نمونه، Torrent بتن ها را از نظر کیفی بر اساس میزان ضریب نفوذپذیریست .

6) فعالیت های پژوهشی و مشاوره ای

دستگاه نفوذپذیری بتن در برابر گاز اکسیژن بر اساس روش CEMBUREAU TC 116-PCD RILEM در سال 1382 در این انستیتو راه اندازی شد و از همان زمان پروژه های متعدد پژوهشی و مشاوره ای انجام گرفت.

رئوس فعالیت های پژوهشی و مشاوره ای انجام شده عبارتند از :

1) تاثیر پوزولان

2) تاثیر مواد حباب ساز

3) مقایسه نفوذزذیری بتن در برابر گاز اکسی›ن و عمق نفوذ آب

4) بررسی رابطه بین مقاومت فشاری بتن و ضریب نفوذپذیری بتن در برابر گاز اکسیژن

5) مقایسه ضریب نفوذپذیری بتن در برابر گاز و آب

نتیجه گیری

نفوذپذیری یک ویژگی ریز ساختاری بتون است که میزان قابلیت این ماده ساختمانی را برای عبور سیالی با ویسکوزیته مشخص و تحت گرادیان فشار نشان می دهد. ضریب نفوذپذیری ارتباط مستقیمی با ریز ساختار و کیفیت بتن دارد. در بسیاری از منابع معتبر ضریب نفوذپذیری به عنوان کلید پایایی بتن قلمداد شده است.

به نظر می رسد با توجه به اهمیت پایایی بتن در شرایط محیطی مختلف در نواحی گوناگون کشور، باید در راستای گسترش روش های متداول و معتبر برای ارزیابی کیفی بتن و ضوابط پذیرش بتن اقدام نمود و بر اساس نتایج بدست آمده معیارهایی نظیر ضریب نفوذپذیری بتن دربرابر گاز اکسیژن را نیز در آیین نامه های ملی منظور نمود.

8) تعدادی از مراجع

1) Bakhshi, M., Mahoutian, M. and Shekarchi, M., “The Gas Permeability of Concrete and Its Relationship with Strength”; Second International fib Congress, Naples, Italy, June 2006.

2) Mahoutian M., Bakhshi, M. and Shekarchi, M., “Study on Gas Permeability of Air-Entrained Concrete” Ninth CANMET/ACI International Conference on Advances in Concrete Technology, Poland, May - June 2007(accepted).

3)Mahoutian M., Bakhshi, M.,Bonakdar A. and Shekarchi, M., “Effect of High Reactivity Metakaolin on the Gas Permeability of High Performance Concrete Mixture” Ninth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, POLAND, May - June 2007(accepted).

4)محمد شکرچی زاده، مهدی بخشی، " نفوذپذیری بتن در برابر گاز اکسیژن"، مجله انجمن بتن ایران‏‌‏‏‏‏‏‏‏‏، شماره 13، صفحه 21-16 بهار1383.

5)محمد شکرچی زاده، مهدی بخشی و مهرداد ماهوتیان ، " نفوذپذیری بتن در برابر گاز اکسیژن"، دومین کنفرانس بین المللی بتن وتوسعه، جلد 2، صفحه 777-767، 1384.

مهندس محمد شکرچی زاده

 

نویسنده : کلینیک  بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 


بررسی امکان استفاده از پسماندهای ساختمانی بازیافت شده در ساخت ،

 

مقدمه:

تحقیقات انجام شده در جهان نشان می دهد که حجم نخاله¬های ساختمانی در میان سایر زباله¬ها 13 تا 29 درصد می باشد[2]. در سال 1996 تخمین زده شد که 136 میلیون تن ضایعات ساختمانی حاصل از تخریب و نوسازی مربوط به ساختمان سازی در ایالات متحده تولید شده،که از این مقدار 43 درصد در منابع مسکونی و 57 درصد حاصل از منابع غیر مسکونی است. علاوه براین، ضایعات ساختمانی 48 درصد از کل، که شامل 44 درصد حاصل بازسازی و 9 درصد حاصل ساخت و ساز جدید است . متاسفانه تخمین های مشابهی برای نخاله های ساختمانی حاصل از ساخت و ساز مراکز غیر مسکونی و تجاری و تخریب فیزیکی مراکز از جمله سازه¬های بتنی ، پل های فولادی ، بستر سازی جاده و پاکسازی محل قابل دسترسی نیستند. بر اساس بررسی منابع چندگانه این طور تخمین زده می¬شود که نخاله¬های ساختمانی غیربنایی 2 پوند / هر نفرروز است. با استفاده از یک جمعیت 280 میلیونی، مقدار معادل نخاله¬های ساختمانی، غیربنایی در ایالت متحده حدود 100 میلیون تن در سال است. [1] حجم ضایعات ساختمانی کشور آمریکا برای تعمیرات و بازسازی راه¬ها حدود 91 میلیون تن و بتن قابل بازیافت در سال¬های 1992 تا 1997، 26 تا 100 میلیون تن است . همچنین در ایالت کالیفرنیای امریکا حدود 12 درصد از حجم محل¬های دفن را نخاله¬ها تشکیل می¬دهند که حدود 25 درصد از حجم کل آن¬ها می¬باشد. میانگین وزن ضایعات ساختمانی در این ایالت بیش از 4 میلیون تن در سال است.[2]

آمار ثبت شده در خصوص میزان خاک و نخاله ساختمانی دفع شده در تهران نشان می¬دهد، از سال 1368 تا سال 1377 ، مجموعاً 61275196 تن معادل 116928033 مترمکعب آوار ساختمانی توسط 8847829 سرویس خودرو به محل تعیین شده از طرف شهرداری دفع شده است. آمارتولید نخاله¬های دفع شده در سال 1380، در گودال¬های اطراف تهران حدود 11973947 تن بوده است که بیش¬ترین مقدار به ترتیب، در گودهای کهریزک و آبعلی دفع شده است. [9] با توجه به اطلاعات موجود در سال 1385 ، سهم پروانه¬های صادره برای تخریب و نوسازی نشان دهنده این است که عملاً بین 5 تا 8/25 درصد بوده. در حالی که برای شهر تهران از کل پروانه¬های صادره برای تخریب حدود 90 تا 94 درصد برای تجدید بنا پس از تخریب است که می¬تواند حجم عملیات تخریب را نشان بدهد. [10]

با توجه به حجم بالای تولیدپسماندهای ساختمانی در بخش¬های مسکونی و غیر مسکونی از یک سو و از طرف دیگر حجم بالای مصرف بتن به عنوان پر مصرف¬ترین محصول ساختمانی در حالی که هر روز ابعاد و تعداد پروژه¬های عمرانی به خصوص در کشورهای در حال توسعه در حال گسترش می¬باشد، بدیهی است که انجام فرآیند بازیافت این پسماند تا چه حد می تواند در حفظ منابع موجود که بعضاً غیر قابل تجدید می¬باشند و نیز حفظ محیط زیست از ورود این حجم پسماند¬های ساختمانی ، لازم و ضروری باشد. در این مقاله سعی می¬گردد تا پتانسیل ها ، مشکلات ، راهکارها و مزایای این امر در راستای تحقق دستیابی به آن ارزیابی گردد.

تعریف پسماندهای ساختمانی:

فعالیت¬های ساختمانی شامل مجموعه فعالیت¬ها و مراحل ایجاد ساختمان و ابنیه¬های مختلف در بخش¬های آب، صنعت اسکله¬ها، راه¬ها، محوطه¬ها و ... ، تغییرات اساسی برای افزایش کارایی و عمر بنا ، تجدید بنا و تغییرات جزئی می¬شود .پسماند ساخت و تخریب، از ساخت، نوسازی و تخریب ساختمان¬ها، ابنیه صنعتی، سازه¬های آبی چون مخازن و سدها، کارخانه ها، نیروگاه¬ها، تاسیسات اتمی، اسکله¬ها، رویه راه¬ها، جداول و قطعات پیش¬ساخته، پل¬ها و ... ، و پاک¬سازی آوارهای ناشی از بلایای طبیعی و انسانی حاصل می¬شوند. [1]

اگر چه ضایعات ساختمانی جزو کم خطرترین انواع پسماند یعنی پسماندهای عادی طبقه بندی می¬شوند، ولی از اوایل دهه 90 بر اساس مطالعاتی که صورت گرفته، مشخص شده است که مواد زائد خطرناک مانند چسب، رنگ و رزین¬ها، هر چند ناچیز، همراه نخاله¬ها ممکن است خطراتی را برای محیط زیست و انسان ایجاد نماید.[3] حجم پسماندهای ساختمانی به عواملی چون میزان رشد جمعیت و نیاز روزافزون به محل سکونت و تاسیسات و تجهیزات زیربنایی، نرخ مهاجرت روستاییان به شهرها و توسعه ناخواسته مراکز جمعیتی، بافت و قدمت ساختمان¬های موجود و میزان مقاومت آن¬ها در برابر زلزله، بلایای طبیعی، معماری ساختمان¬های موجود و تقاضای نسل حاضر و ... بستگی دارد.[2]

انواع پسماند¬های ساختمانی:

پسماند ساخت و تخریب ابنیه و سازه¬ها شامل بتن، آسفالت، چوب، فلزات، شیشه، گچ، آجر، انواع سنگ، مواد پلیمری، موزائیک، سرامیک، کاشی و مواد لازم برای بام سازی هستند.

معمولا اجرای این نخاله¬ها را حدوداً 40 تا 50 در صد بتن، آسفالت، آجر، بلوک، سنگ و خاک، 20 تا 30 درصد چوب و محصولات مربوطه و 20 تا 30 درصد پسماند های متفرقه¬ای همچون فلزات، گچ، شیشه، آزبست و سایر مواد عایق و پلیمری و اجرای تاسیسات آب و فاضلاب و برق تشکلیل می¬دهد.]1[ در کشور استرالیا عمده نخاله¬های ساختمانی بر حسب تن در سال شامل 726000 بتن،795000 آسفالت، 471000 آجر، 300000 مصالح بنایی، 41000 خاک، 176000 سنگ، 35000 ضایعات چوب و ... می¬باشد. در صد ترکیب مواد تشکیل دهنده آوراهای ساختمانی کشور ایرلند در سال 1996 شامل 45 درصد خاک و سنگ، بتون، آجر، کاشی، سرامیک 31 درصد، فلزات 6 درصد، آسفالت و قیر 1 درصد، چوب 7 درصد و سایر موارد 10 درصد می¬باشد. در آلبرتا کانادا در سال 1997 آوار ساختمانی شامل 35 درصد چوب، 24 درصد سرامیک، 17 درصد مصالح بنایی، 8 درصد کاغذ، 7 درصد فلزات آهنی، 3 درصد شیشه، 2 درصد پلاستیک و 16 درصد سایر مواد بوده است. درصد تفکیک میانیگن آوار ساختمانی در آمریکا شامل 27 درصد چوب، 23 درصد آسفالت، بتن و آجر، 13 درصد تخته گچی، 12 درصد مصالح بام سازی، 9 درصد فلزات، 3 درصد کاغذ و 1 درصد پلاستیک می باشد. [10]

بازیافت نخاله ساختمانی در سایر کشورها:

در حال حاضر در بسیاری از کشورهای پیشرفته به دلیل مسائل زیست محیطی مانند کمبود منابع، کمبود محل دفن و آلودگی محیط زیست بازیافت نخاله¬های ساختمانی مورد توجه ویژه¬ای می¬باشد و این امر از سوی کلیه دست¬اندرکاران دنبال می¬گردد. در کشور ایرلند در حدود 82 درصد از نخاله¬های ساختمانی بازیافت می¬گردد. در دولت محلی انتاریودرکشور کانادا این عدد 12 درصد ، در ژاپن این عدد 98 درصد و در ایالات مختلف آمریکا متغیر است. در بسیاری از کشورها نیز فعالیت¬های زیادی در کاهش تولید نخاله و نیز استفاده مجدد از آن¬ها صورت گرفته است. [10]

مقدار مصالح بازیافتی در استرالیا[10]

مصالح بازیافت شده مقدار ( تن در سال )
بتن 726000

آسفالت 795000

آجر 471000

مصالح بنایی 300000

خاک 41000

سنگ 176000

ضایعات چوب 35000

مقدار مصالح تولیدی و بازیافتی در ایرلند[10]

سال زباله تولیدی (بدون زباله کشاورزی) مدیریت دفع آوار درصد آوار بازیافت شده

1995 11.2 میلیون تن 1.3 میلیون تن 35%

1998 15.4 میلیون تن 2.7 میلیون تن 43.30%

انواع بازیافت مواد پسماندهای ساختمانی :

پسماندهای ساختمانی شامل چهار بخش پسماندهای ناشی از ساخت، پسماندهای ناشی از تخریب ساختمان¬ها، پسماندهای ناشی از تعمیر و پسماندهای ناشی از بلایایی مانند زلزله ، انفجار و ... می¬باشد [10] . این چهار پسماند از منظر ماهیت و ساختار همانند هم بوده لذا اختلاف آن¬ها در تنوع و حجم پسماند و نحوه¬ی جداسازی آن¬ها می¬باشد. بدیهی است که مصالح ناشی از تخریب دارای حجم و تنوع بیشتر پسماند می¬باشد. بازیافت پسماند مصالح ساختمانی به دو صورت انجام می گیرد:

• بازیافت موادی که بدون هیچ گونه تغییر ماهیتی به چرخه باز مصرف برمی¬گردند مانند فولاد و...

• بازیافت موادی که پس از طی فرایندی به مواد جدید تبدیل می¬شوند. مانند شیشه، مواد پلیمری و پلاستیک و...[1]

مزایای استفاده از بازیافت نخاله¬های ساختمانی در ساخت بتن:

• حفظ منابع محیط زیست که در بسیاری از صنایع تجدید ناپذیر و یا در بازه¬های زمانی بسیار بلند تجدید می¬گردد: امروزه بتن پر مصرف¬ترین مصالح ساختمانی به¬شمار می¬آید. بدیهی است که این امر خود نشان دهنده حجم بالای استفاده از منابع مختلف مانند آهن، سیمان، سنگ دانه¬ها و آب به صورت مستقیم برای تولید بتن باشد. برخی از محصولات جانبی مانند مواد محافظتی و کیورینگ بتن و اسپیسرها نیز به صورت غیر مستقیم با افزایش دوام سازه¬ها باعث حفظ این منابع می¬گردند.

• کاهش پسماندهای نهایی و آلودگی محیط زیست: با توجه به حجم بالای پسماندهای ساختمانی استفاده بخشی از آن¬ها نیز در ساخت این پرمصرف¬ترین مصالح ساختمانی باعث کاهش بخشی از پسماندهای تولیدی و مشکلات ناشی از عدم بازیافت آن¬ها می¬گردد.

• ایجاد اشتغال: با توجه به نیازهای تخصیص منابع انسانی در مراحل مختلف چون تحقیقات، جداسازی و حمل پسماندها، کارخانه تبدیل مواد رونق این امر می تواند ایجاد کننده فرصت¬های شغلی باشد.

• منافع اقتصادی: با آزاد سازی قیمت¬ها، حذف یارانه¬های دولتی و در حال حاضر تحریم¬های موجود بر اقتصاد ایران و به تبع آن افزایش هزینه¬های تولید و حمل، بازیافت انواع پسماندها به خصوص بازیافت مصالح گران قیمت ساختمانی مانند سیمان، سنگ دانه ها، آرماتور، مواد شیمیایی، لوازم قالب بندی و ... می تواند ایجاد کننده منافع اقتصادی مناسبی چه از نظر حفظ منابع طبیعی و ایجاد امکان صادرات و چه از منظر بازیافت پسماندها برای سرمایه¬گذاران باشد.

مسائل، پیش نیاز¬ها و راهکارهای مورد نیاز جهت بازیافت مصالح ساختمانی قابل مصرف در بتن:

• تحقیقات و پژوهش جهت دستیابی به راهکاری علمی و عملیاتی برای بازیافت پسماندها و چگونگی تبدیل به مصالح جدید و غیرجدید پیشنهادی در صنایع مرتبط، دانشگاه-ها و مراکز پارک¬های فن¬آوری و ...: لازم به ذکر است که این امر بیشتر در توسعه محصولات بازیافتی در تبدیل به محصولات جدید، دارای اهمیت می باشد. این امر در حال حاضر در بسیاری از کشورهای پیشرفته مانند آلمان، استرلیا، آمریکا، کانادا و ... با توجه به محدودیت شدید منابع و محل دفن در حال انجام و اجرا می باشد. [10]

• آموزش دست¬اندرکاران: هم اکنون در بسیاری از کشورهای توسعه یافته دوره¬هایی برای دست¬اندرکاران عرصه ساخت¬ و ساز از سوی سازمان¬های مربوطه برگزار می¬گردد. این دوره¬ها بر مبنای استفاده از مصالح با قابلیت بازیافت بیشتر، چگونگی بازیافت و مراحلی که بر عهده ایشان می باشد مانند جداسازی و ... و نیز استفاده از انواع مواد بازیافتی، در بخش¬های طراحی، ساخت و تخریب می¬باشد. [10] این امر می¬تواند تا حدود زیادی مشکلات مربوط به عملی شدن این فرآیند را تسهیل نماید.

• تدوین استانداردهای کنترل کیفی و اجرایی بازیافت پسماندها و تبدیل به مصالح کاربردی ساختمانی و بتن: هم اکنون در بسیاری از کشورهای جهان استانداردها و دستورالعمل-هایی جهت بازیافت نخاله¬های ساختمانی تدوین و در اختیار دست¬اندرکاران مربوطه قرار گرفته است. [10]

• طراحی و ایجاد سیستم¬های جمع¬آوری، جداسازی و حمل پسماندهای ساختمانی با بکارگیری و مشارکت صنایع خصوصی و شهرداری¬ها و کارخانجات تولید مصالح مرتبط: در حال حاضر تعدادی از این تجهیزات مانند تجهیزات و خط بازیافت مصالح سنگی ناشی از تخریب بتن و ... طراحی و در بسیاری از کشورهای پیشرفته مورد استفاده قرار می¬گیرد. لذا شایسته است با تحقیقات و سرمایه¬گذاری محققین داخلی بازیافت سایر متریال و پسماندهای ساختمانی نیز تحقق یابد. البته این امر در حال حاضر به صورت بسیار محدود آن هم صرفاً در خصوص بازیافت مصالح سنگی در برخی محل¬های دفن مانند ایستگاه آبعلی تهران در حال انجام می¬باشد که نیازمند گسترش از نظر حجم، وسعت و تنوع می¬باشد. [9]

• تامین منابع مالی اولیه در بخش¬های تحقیقات و بازیافت توسط منابع دولتی و یا شهرداری¬ها: با توجه به منافع اقتصادی بلند مدت و زیست محیطی و نیز بهره¬گیری از سرمایه-گذاری بخش خصوصی کارخانجات نهایی محصولات ساختمانی و یا سرمایه گذاران جدید، با توجه به منافع اقتصادی، قوانین مورد نیاز ایجاد گردد. در حال حاضر در بسیاری از کشورهای دنیا قوانینی وضع گردیده و اجرا می¬شود که بخش زیادی از هزینه¬ها بر عهده تولیدکننده¬های نخاله¬های ساختمانی می¬باشد. [10]

مصالح قابل بازیافت نخاله ساختمانی برای ساخت بتن :

بدیهی است اگر صرفاً در مبحث بازیافت به استفاده از بتن تخریبی آن محدوده با هزینه دو برابر و نیمی نسبت به استفاده از سنگ دانه دست اول جامه¬ی عمل پوشیده شود، به هیچ وجه اقتصادی نمی¬باشد لذا لازمه موفقیت این امر، دیدگاه ارزش¬های محیط زیستی و استفاده و انجام بازیافت حداکثری همه بخش¬ها و انواع نخاله ساختمانی می¬باشد [9].

• انواع مصالح پلیمری و لاستیکی: درب و پنجره¬های UPVC ، لوله¬های پلیکا، انواع کف پوش، دیوار پوش و سقف های کاذب پلیمر، انواع بسته بندی¬های پلیمری مواد و سایر محصولات.

• انواع بتن¬های تخریبی: انواع بتن¬های مصرفی در فونداسیون¬ها، دال¬ها، ستون، دیوارهای برشی، تیرها، محوطه سازی¬ها، کف سازی¬ها، انواع سازه¬ها، مخازن، نیروگاه¬ها، پل¬ها، کارخانه¬ها و ...

• انواع سنگ: سنگهای مصرفی در کف سازی و نما سازی و ...

• کاشی و سرامیک: کاشی و سرامیک¬های اجرا شده در سرویس¬های بهداشتی، حمام، آشپزخانه و کف سازی سالن و اتاق¬ها.

• انواع آجرهای سفالی: دیوارهای سنتی و پارتیشن، بلوک¬های سقفی بلوکی و ...

• مصالح گچی: نازک کاری¬ها و پارتیشن¬ها.

• انواع آهن آلات: درب و پنجره¬ها، نعل درگاه¬ها، اسکلت¬ها، میلگردها، شیرآلات، نرده¬ها و ...

• انواع مصالح پایه نفتی: انواع پوشش¬های آب بند مانند آسفالت ، قیرگونی و ایزوگام.

• شیشه: انواع شیشه¬های درب و پنجره و ...

• آسفالت: آسفالت موجود در جاده¬ها ، محوطه سازی¬ها و پشت بام¬ها.

پتانسیل¬های استفاده از مصالح بازیافتی در بتن:

• آرماتور: این محصول قابل بازیافت از کلیه آهن آلات استخراجی از نخاله¬های ساختمانی در کارخانه¬های ذوب و نورد می¬باشد. این بازیافت به صورت مستقیم و بدون تغییر در نوع محصول بازیافتی حاصل از پسماند می¬باشد.

• شیشه: امروزه براساس تحقیقات و آزمایش¬های انجام شده به اثبات رسیده است که افزودن پودر شیشه¬های بازیافتی در هنگام استفاده جایگزین سیمان و یا سنگ دانه در بتن¬های جدید ضمن حفظ مقاومت فشاری، باعث ارتقا مقاومت الکتریکی و کاهش نفوذ پذیری آن می¬گردد. همچنین استفاده از پودر شیشه در سنگ¬های مصنوعی بتنی تولیدی می¬تواند باعث افزایش کیفیت سایشی و زیبایی آن گردد.[4]

مشخصات مقاومت الکتریکی و مقاومت فشاری بتن حاوی پسمانده های شیشه [4]

مقاومت فشاری 28 روزه ( Kg/cm2) مقاومت فشاری 7 روزه (Kg/cm2) مقاومت الکتریکی بتن 28 روزه مقاومت الکتریکی بتن 7 روزه شماره نمونه

288.4 166.2 7.7 5.3 نمونه 1

282.4 172 7.7 6 نمونه 2

320.5 154 7.6 5.6 نمونه 3

280.5 182.8 10 8.6 نمونه 4-نصف شیشه

291.3 193.6 11 9 نمونه 5-نصف شیشه

292 190.2 11.1 8.7 نمونه 6-نصف شیشه

224.1 185 10 8.1 نمونه 7-تمام شیشه

241 204.7 9.6 8.1 نمونه 8-تمام شیشه

230.5 139 9.5 8 نمونه 9-تمام شیشه

• استفاده از مصالح لاستیکی و پلاستیکی بازیافتی به عنوان افزودنی در بتن: با توجه به تحقیقات انجام شده توسط برخی از کارشناسان داخلی و خارجی به اثبات رسیده است که استفاده از لاستیک می¬تواند باعث ارتقا برخی از خواص در بتن¬های جدید گردد، مانند افزایش الاستسیته، مقاومت کششی، مقاومت ضربه ای و...[7-8]

• استفاده از کاشی بازیافتی در بتن: در حال حاضر در بعضی از کشورها تحقیقاتی برای استفاده از کاشی و سرامیک بازیافتی در کف¬پوش¬های تزیئی انجام گردیده که در برخی از کشورها از جمله کشور دانمارک بعضی از کارخانجات تولید این کف پوش¬ها، در حال فعالیت می¬باشند. [9]

• استفاده از پودر آجر در بتن: براساس تحقیقات انجام شده توسط محققان به اثبات رسیده است که افزودن پودر آجر به جای سیمان در بتن باعث حد قابل قبولی کاهش مقاومت فشاری و یا سایشی گردیده و می¬تواند در بتن¬های با مقاومت معمولی و بتن¬هایی که نیاز به مقاومت سایشی بالا ندارند، مورد استفاده قرار گیرد.[ 5]

• انواع فاصله نگهدارهای پلاستیکی آرماتور: اسپیسرهای پلاستیکی یا فضاسازهای آرماتورها قابل بازیافت از انواع مواد پلیمری موجود در نخاله¬های ساختمانی مانند محصولات پلاستیکی و پی وی سی می¬باشد.

• واتراستاپ: استفاده از پلیمرهای بازیافتی از نخاله¬ها برای ساخت نوارهای واتراستاپ جهت آب بندی درزهای اجرایی و انبساطی بتن.

• الیاف بتن: انواع الیاف¬ها که در دو نوع پلیمری و فلزی مورد استفاده در بتن می¬باشند قابلیت تولید از بازیافت انواع مواد پلیمری و آهن آلات موجود در نخاله را دارند. این الیاف با ایجاد خواصی چون کاهش ترک¬های حرارتی و اجرایی در بتن و افزایش مقاومت کششی، خمشی و فشاری بتن می¬گردد.

• سنگ دانه: امروزه با توجه به تحقیقات و پژوهش¬های انجام شده اثبات گردیده که بازیافت مصالح سنگی بتن در بسیاری از مواقع با شناخت خواص و پتانسیل آن قابلیت استفاده در بتن جدید را دارد. در صورتی¬که از بتن خرد شده صرفاً به عنوان درشت دانه استفاده شود تاثیر چندانی بر مقاومت نداشته (بسته به میزان جایگزینی سنگدانه¬ها باعث کاهش مقاومت از 10 درصد تا حداکثر 40 برای جایگزینی 80 درصدی مصالح سنگی درشت دانه می¬شود ) و سایر مشخصات بتن نیز دست خوش تغییر عمده نخواهد شد. لذا در صورتی که جایگزین بخش ریز دانه گردد، برخی از خواص مانند مقاومت فشاری، کششی، مدول الاستسیته و جمع¬شدگی بسته به میزان جایگزینی می¬تواند باعث ارتقاء حداکثر تا 15 درصد گردد [9]. همچنین جایگزینی مصالح سنگی بازیافتی از بتن تخریبی باعث کاهش وزن مخصوص بتن تا در حدود 2100 کیلیوگرم می گردد. [6] مصرف مصالح بازیافتی به عنوان سنگ دانه¬های بتن در سه طیف قابل استفاده است .

1. بتن¬های سازه¬ای با استفاده از بازیافت بتن¬های تخریبی و سنگ¬های ساختمانی

2. بتن¬های پر کننده با استفاده از نخاله¬های ساختمانی ناشی از بازیافت بخش¬های غیر بتنی و با مقاومت کمتر مانند دیوارهای سفالی، گچ ها، بلوک¬ها و ...

3. بتن¬های مصرفی جهت تولید بتن¬های سبک با استفاده از مواد بازیافتی از مصالح سبک بازیافتی مانند یونولیت ها، دیوارهای آجری و گچی، مصالح چوبی و .... [9]

طرح اختلاط بتن با مصالح بازیافتی [9]
ریزدانه (5-0 م. م ) درشت دانه (20-5 م.م ) نسبت آب به سیمان آب سیمان مشخصه مخلوط

در صد جایگزینی آواری طبیعی درصد جایگزینی آورای طبیعی

(Kg/m3 ) (Kg/m3 ) (Kg/m3 ) (Kg/m3 ) (Kg/m3 ) (Kg/m3 )

0 0 840 0 0 948 0.53 185 350 S0G0

20 168 672 0 0 948 0.53 185 350 S2G0

40 336 504 0 0 948 0.53 185 350 S4G0

60 504 336 0 0 948 0.53 185 350 S6G0

80 672 168 0 0 948 0.53 185 350 S8G0

100 840 0 0 0 948 0.53 185 350 S10G0

0 0 840 20 19 758 0.53 185 350 S0G2

0 0 840 40 380 569 0.53 185 350 S0G4

0 0 840 60 570 379 0.53 185 350 S0G6

0 0 840 80 760 190 0.53 185 350 S0G8

0 0 840 100 950 0 0.53 185 350 S0G10

مشخصات بتن تازه تولیدی با مصالح بازیافتی [9]

مثاومت فشاری ( Mpa ) نسبت آب به سیمان سیمان مشخصه مخلوط

درصد تفییرات 28 روزه 7 روزه

(Kg/m3 )

0 32.7 20.6 0.53 350 S0G0

+6.1 34.7 21.6 0.53 350 S2G0

+8.2 35.3 25.6 0.53 350 S4G0

+9.7 35.8 27.6 0.53 350 S6G0

+14.8 37.5 30.1 0.53 350 S8G0

+14.3 37.3 29.3 0.53 350 S10G0

-9.2 29.7 16.8 0.53 350 S0G2

-25.2 24.3 15 0.53 350 S0G4

-30.6 22.7 14.6 0.53 350 S0G6

-31.1 22.5 13.7 0.53 350 S0G8

-39.8 19.7 12.5 0.53 350 S0G10

مشخصات بتن سخت شده تولیدی با مصالح بازیافتی [9]

دمای بتن وزن مخصوص بتن تازه اسلامپ نسبت آب به سیمان سیمان مشخصه مخلوط

درجه سانتیگراد ( Kg/m3 ) ( Cm )

(Kg/m3 )

30 2324 15 0.53 350 S0G0

29 2315 8 0.53 350 S2G0

29 2305 6 0.53 350 S4G0

30 2282 2.5 0.53 350 S6G0

30 2236 1 0.53 350 S8G0

29 2207 0 0.53 350 S10G0

30 2323 18 0.53 350 S0G2

30 2288 20 0.53 350 S0G4

30 2257 20 0.53 350 S0G6

29 2228 21 0.53 350 S0G8

29 2230 22 0.53 350 S0G10

• مواد چسباننده بتن (جایگزین سیمان): استفاده از مواد پلیمری بازیافتی نخاله¬های ساختمانی به عنوان مواد چسباننده در بتن برای مصارف خاص مانند ملات¬های تعمیراتی، پرکننده و یا حتی مواد جایگزین گروت¬ها مانند بتن¬های پلیمری و ...

• مصالح یا مواد کیورینگ یا حفظ رطوبت بتن: با توجه به اهمیت کیورینگ مناسب در کیفیت و دوام بتن و تنوع روش¬های موجود برای این امر، استفاده از مصالح بازیافتی به صورت ایجاد فیلم¬های حفظ رطوبت از مواد پلیمری و ... مانند ورق¬های پلاستیکی، می تواند در فرآیند بازیافت مصالح پلیمری و قیری مورد توجه قرار گیرد.

• مواد محافظتی و آب بند سطحی بتن: بازیافت مصالح پایه قیری و یا پلیمری، می¬تواند با تبدیل آن¬ها به پوشش محافظتی و کنترل کننده نفوذ پذیری بتن، مورد استفاده قرار گیرد.

• لوزام قالب بندی: با بازیافت انواع آهن آلات و یا پلیمری، می توان از آن¬ها در ساخت لوازم قالب بندی فلزی و یا پلیمری استفاده نمود. این بازیافت نیز به صورت بازیافت بدون تغییر در ماهیت پسماند می باشد.
نتیجه گیری:

با توجه به اهمیت مبحث بازیافت بر محیط زیست، اقتصاد و جایگاه جهانی آن، لازم به نظر می¬رسد تا این امر با وضع قوانین، حمایت¬های دولتی در بخش¬های خصوصی و مراکز علمی مورد توجه قرار گیرد. این امر با توجه به وسعت ابعادی و مالی پروژه¬های عمرانی که تامین منابع مالی آن مستقیماً بر دوش مردم نبوده و توسط سرمایه گذاران خصوصی و دولت تامین می¬گردد می¬تواند در یک برنامه¬ریزی مدون عملیاتی گردیده و باعث ایجاد درآمدهای اقتصادی پس از بهره برداری و نیز مدیریت مناسب پسماندها و حفظ محیط زیست گردد. بدیهی است که اولین گام کاربردی در این امر تشریح پتانسیل¬های کاربردی، ملموس و عملیاتی و تبین دور نماهای آن برای دست اندرکاران مختلف این راه می باشد. بی شک در این برهه انجام کارهای پژوهشی از سوی مراکز علمی چون دانشگاه¬ها و پارک¬های فن آوری و .... برای عینیت بخشی این امر از اهمیت ویژه¬ای برخودار می¬باشد. همچنین لازم است با بررسی و ایجاد مراکز جمع آوری پسماندهای ساختمانی در هر شهر و یا در مراکز استان¬ها و ایجاد سیستم¬های حمل و مکانیزم¬های جداسازی در مبدا ( با توجه به اینکه عمدتاً ایجاد کننده¬های این پسماندها شرکت¬های مجهز و مجریان ساخت و ساز با بنیه مالی مناسب می¬باشند .) و یا در محل جمع¬آوری گامی موثر در این عرصه به سوی عملیاتی کردن مبحث برداشته شود. همچنین تدوین قوانین جهت جداسازی و تحویل توسط تولید کننده نخاله و یا استفاده اجباری از پیمانکاران تخریب تخصصی با دانش و تجهیزات لازم می تواند تا حدود زیادی راهگشا باشد.

منابع و مراجع :

[1] چوبانگلوس، جورج.، کریت، فرانک. (1389)، راهنمای کاربردی مدیریت پسماند، مترجمان: خانی، محمد رضا.، پورعطایی، مهدی.، خسرو محمودخانی، روح الله.، جلد اول و دوم ، انتشارات شهرداری¬ها و دهیاری های کشور.

[2] خیاطی، محمود.، (1385)، مقاومت و دوام بتن تهیه شده از سنگدانه های بازیافتی، پایان نامه کارشناسی ارشد عمران (گرایش خاک و پی) ، دانشگاه فردوسی مشهد.

[3] غفوری،محمد.، و همکاران ،(1384) ، نخاله های ساختمانی ، بازیافت و بهره برداری از آنها جهت دفن بهداشتی زباله های جامد شهری ، سازمان بازیافت و تبدیل مواد مشهد.

[4] عباسی دزفولی، عبدالکریم.، اولی پور، مسعود.، برنا، مسعود.، پور زنگنه، بهرام. (1391)، مدیریت ساخت و توسعه استفاده از خورد شیشه های بازیافتی در بتن، اولین همایش بین المللی بحران های زیست محیطی و راهکارهای آن ، علوم و تحقیقات خوزستان.

[5] بیات، حبیب الله.،شهابی، اکبر.، شاه محمدی، شهریار. (1389)، بررسی تاثیر پودر آجر و شیشه بازیافتی بر مقاومت سایشی بتن زیر آب سدها، دومین کنفرانس ملی بتن ایران.
[6] مستوفی نژاد، داوود.، افتخار، محمدرضا. (1384)، بررسی خواص مکانیکی بتن با مقاومت پایین بازیافتی، دومین کنفرانس بین المللی بتن و توسعه.

[7] مستوفی نژاد، داوود.، نجار، محمد. (1384)، بررسی مقاومت فشاری بتن دانه و پودر لاستیک تایر بازیافتی، دومین کنفرانس بین المللی بتن و توسعه.

[8] حاجتی مدارایی، عطالله.، پوراکابریان، حمید. (1390)، بررسی خواص مهندسی بتن حاوی PET بازیافتی، ششمین کنگره ملی مهندسی عمران.

[9] ماجدی اردکانی، محمدحسین.، رئیس قاسمی، امیرمازیار.، فیروزیار، فهیمه. (1386)، مطالعات مقدماتی بازیافت آوارهای ساختمانی ( ایستگاه آبعلی )، گزارش تحقیقاتی - نشریه شماره 459، مرکز تحقیقات ساختمان و مسکن، چاپ اول.

[10] ماجدی اردکانی، محمدحسین.، مدنی، همایون. (1391)، مروری بر مدیریت آوراهای ساختمانی، گزارش تحقیقاتی - نشریه شماره 623، مرکز تحقیقات ساختمان و مسکن ، چاپ اول.

نویسنده : کلینیک بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))


بتن و انواع آن

بتن به انگلیسی: (Concrete)‏ در مفهوم وسیع به هر ماده یا ترکیبی که از یک ماده چسبنده با خاصیت سیمانی شدن تشکیل شده باشد گفته می‌شود. این ماده چسبنده عموما حاصل فعل و انفعال سیمانهای هیدرولیکی و آب می‌باشد. حتیامروزه چنین تعریفی از بتن شامل طیف وسیعی از محصولات می‌شود. بتن ممکن است از انواع مختلف سیمان ونیز پوزولان‌ها، سرباره کوره‌ها، مواد مضاف، گوگرد، مواد افزودنی بتن، پلیمرهای بتن، الیاف بتن و غیره تهیه شود. همجنین در نحوه ساخت آن ممکن است حرارت، بخار آب، اتوکلاو، خلا، فشارهای هیدرولیکی و متراکم کننده‌های مختلف استفاده شود.با توجه به گسترش و پیشرفت علم و پیدایش تکنولوژی های فراوان در قرن اخیر، شناخت بتن و خواص آن نیز توسعه قابل ملاحظه ای داشته است، به نحوی که امروزه شاهد کاربرد انواع مختلف بتن با مصالح مختلف هستیم که هر یک خواص و کاربری مخصوص به خود را داراست. در حال حاضر انواع مختلفی از سیمانها که شامل پوزولانها ، سولفورها ، پلیمرها ، الیافهای مختلف و افزودنیهای متفاوتی هستند ، تولید می شوند . همچنین می توان خاطر نشان کرد که تولید انواع بتن با استفاده از حرارت ، بخار، اتوکلاوم ، تخلیه هوا ، فشار هیدرولیکی ویبره و قالب انجام می گیرد. بتن به طور کلی محصولی است که از اختلاط آب با سیمان آبی و سنگدانه های مختلف در اثر واکنش آب با سیمان در شرایط محیطی خاصی به حاصل می شود و دارای ویژگیهای خاص است. بتون اینک با گذشت بیش از 170 سال از پیدایش سیمان پرتلند به صورت کنونی توسط یک بنّای لیدزی ، دستخوش تحولات و پیشرفتهای شگرفی شده است.در دسترس بودن مصالح آن ، دوام نسبتاً زیاد و نیاز به ساخت و سازهای فراوان سازه های بتنی چون ساختمان ها ، سازه ها ، سد ها ، پل ها، تونل ها و راه ها ، این ماده را بسیار پر مصرف نموده است. اینک حدود سه تا چهار دهه است که کاربرد این ماده در شرایط خاص مورد استقبال کاربران آن قرار گرفته است. امروزه با پیشرفت علم و تکنولوژی مشخص شده است که صرف توجه به مقاوت به عنوان یک معیار برای طرح بتن برای محیطهای مختلف و کاربردهای مختلف نمی تواند جوابگوی مشکلاتی باشد که در درازمدت در سازه های بتنی ایجاد می گردد. چند سالی است که مسأله دوام بتن در محیط های مختلف مورد توجه قرار گرفته است.مشاهده خرابی هایی با عوامل فیزیکی و شیمیایی در بتن ها در اکثر نقاط جهان و با شدتی بیشتر در کشور های در حال توسعه، افکار و اذهان را به سمتطرح بتن هایی با ویژگی خاص و با دوام لازم سوق داده است. در این راستا در پاره ای از کشورها دستورالعمل ها و استانداردهایی نیز برای طرح بتن با عملکرد بالا تهیه شده و طراحان و مجریان در بعضی از این کشورهای پیشرفته ملزم به رعایت این دستورالعمل ها گشته اند.

مواد تشکیل دهنده بتن

سنگدانه‌ها در بتن تقریبا سه چهارم حجم آنرا تشکیل می‌دهند و ملات سیمان و آب یک چهارم

سیمان (Cement)

نوشتار اصلی: سیمان

آب (Water)

کیفیت آب در بتن از آن جهت حائز اهمیت است که ناخالصی‌های موجود در آن ممکن است در گیرش سیمان اثر گذاشته و اختلالاتی به وجود اورند. همچنین آب نامناسب ممکن است روی مقاومت بتن اثر نامطلوب گذاشته و سبب بروز لکه‌هایی در سطح بتن و حتی زنگ زدن آرماتور بشود. در اکثر اختلاط‌ها آب مناسب برای بتن آبی است که برای نوشیدن مناسب باشد. مواد جامد چنین آبی به ندرت بیش از 2000 قسمت در میلیون ppm خواهد بود به طور معمول کمتر از 1000 ppm می‌باشد. این مقدار به ازای نسبت آب به سیمان 0?5 معادل 0?05 وزن سیمان می‌باشد. معیار قابل آشامیدن بودن آب برای اختلاط مطلق نیست و ممکن است یک آب اشامیدنی به جهت داشتن درصد بالایی از یونهای سدیم و پتاسیم که خطر واکنش قلیایی دانه‌های سنگی را به همراه دارد، برای بتن سازی مناسب نباشد. به عنوان یک قاعده کلی هر آبی که ph (درجه اسیدیته) آن بین 6 الی 8 بوده و طعم شوری نداشته باشد می‌تواند برای بتن مصرف شود. رنگ تیره و بو لزوما وجود مواد مضر در آب را به اثبات نمی‌رساند.

مقدار آب مصرفی

مقدار آب مصرفی در داخل بتن بسیار با اهمیت است. به منظور تکمیل فرایند واکنش سیمان با آب مقدار مشخصی آب مورد نیاز است. در صورتی که این مقدار کمتر از آن حد باشد قسمتی از سیمان برای واکنش آب کافی دریافت نمی‌کند و واکنش نداده باقی می‌ماند. در صورتی که بیش از مقدار مورد نیاز آب به مخلوط بتن اضافه شود پس از تکمیل واکنش، مقداری آب به صورت آزاد در داخل بتن باقی می‌ماند که پس از سخت شدن بتن باعث پوکی آن و نتیجتا کاهش مقاومت خواهد شد. به همین دلیل دقت در مصرف نکردن آب زیاد در داخل بتن به منظور حصول مقاومت بالا ضروری است.

مقدار آب لازم برای تکمیل واکنش به صورت پارامتر نسبت آب به سیمان تعریف می‌شود. این نسبت برای سیمان پرتلند معمولی حدود 25 درصد است. با این مقدار آب بتن فاقد کارایی لازم خواهد بود و معمولاً نسبت آب به سیمان مورد استفاده در کارگاههای ساختمانی بیش از این مقدار است. در تعیین نسبت اختلاط بتن پارامتری لحاظ می‌شود که مقدار رطوبت سنگدانه‌ها را نیز قبل از افزودن آب به بتن لحاظ می‌کند که در تعیین مقدار آب مورد نیاز حائز اهمیت است. این رطوبت اضافی (یا کمبود رطوبت) مقدار رطوبت مازاد(کمبود رطوبت) سنگدانه‌ها از حالت اشباع با سطح خشک SSD یا(Saturated Surface Dry)است.

عمل آوری بتن (کیورینگ بتن)

با ادامه یافتن Hydration مقاومت بتن افزایش می‌یابد و این واکنش عامل افزایش مقاومت بتن یا همان گیرش سیمان است. برای عمل آوری یا ادامه یافتن فرآیندHydration باید رطوبت نسبی حداقل 80 درصد باشد. در صورتی که رطوبت کمتر از این مقدار شود عمل آوری متوقف شده و درصورتی رطوبت تسبی به بالای 80 درصد بازگردد فرآیند هیدراسیون یا Hydration دوباره شروع خواهد شد. به دلیل تبخیر قسمتی از آب مورد نیاز قبل از تکمیل واکنش بین آب و سیمان (که چندین روز طول می‌کشد) قسمتی از سیمان موجود در مخلوط بتن واکنش نداده باقی می‌ماند. پس از بتن ریزی باید بلافاصله توجه لازم به فرایند عمل آوری معطوف گردد. عمل آوری عبارت است از حفظ رطوبت بتن تا زمانی که واکنش بین سیمان و آب تکمیل شود. این عمل می‌تواند به وسیله عایقکاری موقت، پاشش آب یا تولید بخار صورت گیرد. از دیدگاه عملی، حفظ رطوبت بتن برای 7 روز توصیه می‌شود. در شرایطی که این کار ممکن نباشد حداقل زمان عمل آوری بتن نباید کمتر از 2 روز باشد.

سنگدانه‌ها (Aggregates)

سنگدانه‌ها در بتن تقریبا سه چهارم حجم آنرا تشکیل می‌دهند از اینرو کیفیت آنها از اهمیت خاصی برخوردار است. در حقیقت خواص فیزیکی، حرارتی و پاره‌ای از اوقات شیمیایی آنها در عملکرد بتن تاثیر می‌گذارد. دانه‌های سنگی طبیعی معمولاً بوسیله هوازدگی و فرسایش و یا به طور مصنوعی باخرد کردن سنگ‌های مادر تشکیل می‌شوند.

اندازه دانه‌های سنگی

بتن عموما از سنگدانه‌هایی به اندازه‌های مختلف که حداکثر قطرآن بین 10 میلیمتر و50 میلیمتر می‌باشد ساخته می‌شود. به طور متوسط از سنگدانه‌هایی با قطر 20 میلیمتر استفاده می‌شود. توزیع اندازه ذرات به نام «دانه بندی سنگدانه» مرسوم است. به طور کلی دانه‌های با قطر بیشتر از چهار یا پنج میلیمتر به نام شن و کوچکتر از آن به نام ماسه نامگذاری شده‌اند که این حد فاصل توسط الک 4.75 میلیمتری یا نمره چهار مشخص می‌گردد. حد پایین ماسه عموما 0?07 میلیمتر یا کمی کمتر می‌باشد. مواد با قطر بین 0?06 میلیمتر و 0?02 میلیمتر به نام لای(سیلت)و مواد ریزتر رس نامگذاری شده‌اند. گل ماده نرمی است که شامل مقادیر نسبتا مساوی ماسه و لای و رس می‌باشد.

کانیهای مهم

کانیهای مهم و متداول سنگدانه‌ها در زمینه استفاده در بتن عبارتند از: کانی‌های سیلیسی (کوارتز، اوپال، کلسه دون، تریمیت، کریستوبالیت) فلدسپاتها، کانیهای میکا، کانیهای کربناتی، کانیهای سولفاتی، کانیهای سولفور آهن، کانیهای فرومنیزیم، کانیهای اکسیدآهن، زئولیت‌ها و کانیهای رس.

طبقه بندی براساس شکل ظاهری

در استاندارد ASTM سنگها از لحاظ شکل ظاهری به پنج گروه تقسیم شده‌اند:کاملا گردگوشه، گردگوشه، نسبتا گردگوشه، نسبتا تیزگوشه و تیزگوشه.

در استاندارد BS این نامگذاری به صورت:گردگوشه، بی شکل-بی نظم، پولکی، تیزگوشه، طویل، پولکی طویل می‌باشد.

افزودنی‌ها (Admixtures)

معمولا به جای استفاده از یک سیمان بخصوص، این امکان وجود دارد که بعضی از خواص سیمانهای معمولی مورد استفاده را به وسیله ترکیب کردن ان با یک افزودنی تغییر داد. قابل توجه اینکه نباید عبارات "مواد ترکیبی" و "مواد افزودنی" با معانی مترادف به کار روند، زیرا مواد ترکیبی موادی هستند که در مرحله تولید به سیمان اضافه می‌شوند در حالی که مواد افزودنی در مرحله مخلوط کردن به بتن اضافه می‌شوند. افزودنی‌های شیمیایی اساسا عبارتند از:تقلیل دهنده‌های آب، کندگیر کننده‌ها و تسریع کننده‌های گیرش که در ایین نامه ASTM به ترتیب تحت عنوان‌های تیپ‌های C،B،A طبقه بندی شده‌اند. دسته بندی افزودنی‌ها در استاندارد BS نیز مشابه می‌باشد. در ضمن افزودنی‌های دیگری نیز وجود دارند که هدف اصلی از کاربرد آنها محافظت بتن از اثرات زیان آور یخ زدگی و ذوب یخ است.

تسریع کننده‌های بتن

افزودنی‌هایی هستند که سخت شدگی بتن را تسریع می‌کنند و مقاومت اولیه بتن را بالا می‌برند. چند نمونه از تسریع کننده‌ها عبارتند از: کربنات سدیم، کلرورآلومینیوم، کربنات پتاسیم، فلوئورور سدیم، آلومینات سدیم، نمک‌های آهن و کلرور کلسیم.

کندگیر کننده‌های بتن

افزودنی‌هایی هستند که زمان گیرش بتن را به تاخیر می‌اندازند. این مواد در هوای خیلی گرم که زمان گیرش معمولی بتن کوتاه می‌شود و همچنین برای جلوگیری از ایجاد ترک‌های ناشی از گیرش در بتن ریزی‌های متوالی مفید می‌باشند. به عنوان چند نمونه از کندگیر کننده‌ها می‌توان از شکر، مشتقات هیدروکربنی، نمک‌های محلول روی و براتهای محلول نام برد.[11]. به عنوان مثال اگر با یک کنترل دقیق 0?05 وزن سیمان شکر به بتن اضافه کنیم، حدود چهار ساعت گیرش آنرا به تاخیر می‌اندازد. مصرف 0?2 تا یک درصد وزن سیمان از گیرش سیمان جلوگیری به عمل می‌اورد.

تقلیل دهنده‌های آب(روان کننده‌ها)

این افزودنی‌ها به سه منظور به کار می‌روند:

1-رسیدن به مقاومتی بالاتر به وسیله کاهش نسبت آب به سیمان

2-رسیدن به کارایی مشخص با کاهش مقدار سیمان مصرفی و نتیجتا کاهش حرارت هیدراتاسیون در توده بتن.

3-سادگی بتن ریزی به وسیله افزایش کارایی در قالبهایی با آرماتور انبوه و موقعیت‌های غیرقابل دسترسی

برای مشاهده تقلیل دهنده‌های آب ها با توضیحات و نمودار‌های کارایی و با جزئیات کامل اینجا را مشاهده فرمایید.

افزودنی‌های تقلیل دهنده آب تحت عنوان تیپ A دسته بندی می‌شوند؛ لیکن اگر افزودنی‌ها همزمان با کاهش نیاز به آب باعث تاخیر در گیرش نیز بشوند تحت عنوان تیپ D طبقه بندی می‌شوند. اگر این روان کننده‌ها باعث تسریع در گیرش شوند تیپE نامیده می‌شوند.

فوق روان کننده‌های بتن

این مواد از قویترین انواع تقلیل دهنده‌های آب هستند که در آمریکا به عنوان روان کننده قوی و درASTM به عنوان تیپ F نام گذاری شده‌اند. افزودنی‌هایی نیز هستند که در ضمن تقلیل شدید آب باعث مقداری تاخیر در گیرش نیز می‌شوند و به عنوان تیپ G طبقه بندی شده‌اند. دو نمونه از روان کننده‌های قوی: ملامین فرمالدئید سولفاته شده تغلیظ شده و یا [[نفتالین فرمالدئید سولفاته شده تغلیظ شده]] می‌باشند. اساسا استفاده از اسیدهای سولفاته شده باعث تسریع عمل پراکنش می‌شود. چون در سطح ذرات سیمان جذب شده و به آنها بار منفی می‌دهند واین باعث دفع ذرات از یکدیگر می‌شود. این فرایند کارایی را در یک نسبت آب به سیمان مشخص افزایش می‌دهد.

مطلب:بتن تکنولوژی

نویسنده : کلینیک بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 


بتن سبک هوادار

 

در راستای پیشرفتهای صورت گرفته در جهان، مهندسان بخش مسکن تحقیقات جدی و مستمری انجام داده و می دهند تا بتوانند مسکن با عمر مفید زیاد (چند قرن)،استحکام بالا در مقابل بلایای طبیعی (زلزله، آتش سوزی و ...)، همچنین با توجه به پایان رسیدن عصرانرژی ارزان، حداقل انرژی در ساختمان مصرف گردد و دارای هزینه کمتری نسبت به سایر مصالح رایج باشد که این ایده ها با شناسایی بتن سبک هوادار (foam concrete) تحقق یافت. هم اکنون بتون معمولی غالبا با دانسیته 2400kg/m3 تولید می گردد که با توجه به وزنش مشکلات فراوانی ازجمله اجرای سخت و باخاصیت جذب آب بسیار بالا دائما تاسیسات حرارتی و برودتی ساختمان را در معرض تخریب قرار می دهد و معایب دیگر، خوشبختانه در حال حاضر با افزودن هوا به مخلوط ماسه و سیمان، وزن آن تا اندازه قابل توجهی کاهش می یابد، (400 الی 1800 کیلو گرم بر متر مکعب) و بتن سبک هوادار با خصوصیات بارزی تولید می گردد.

تولید بتن سبک با نوعی مواد افزودنی (فوم هوازی پروتئینی) جهت متخلخل نمودن خمیر ماسه و سیمان توسط شرکت FOPOR SYSTEM در کشور آلمان با روش بهبود دائم طی مراحل تعاملی مهندسی انجام گرفته است.

بتن سبک در گذشته و در حال حاضر در کشورمان تولید می شود که به بتن سبک صنعتی (پوکه صنعتی، معدنی و ...) و بتن سبک که به نوبه خود ضررهایی برای محیط زیست دارا می باشند ولی در کشورهای توسعه یافته این نوع بتن سبک هوادار داده است.

شرکت FOPOR SYSTEM در حال حاضر با بیش از 25 سال سابقه اجرایی در 30 کشور جهان مورد تایید موسسه استاندارد (( دین آلمان)) می باشد و از این منظر نیز با چند شرکت داخلی در حال انجام پژوهش هایی در این زمینه می باشد.

خصوصیات فنی:

بتن سبک هوادار را می توان در دو سطح دانسیته ای تولید کرد :

الف - وزن مخصوص (400 الی 900 کیلو گرم بر متر مکعب) برای ساخت بلوکهای ساختمانی غیرباربر و همچنین بلوکهای تزئینی و پانلها.
ب - وزن مخصوص (1000 الی 1800 کیلو گرم بر متر مکعب) برای قطعات باربر و مسلح.

بتن سبک هوادار در هر دو سطح دارای خصوصیات مشترکی می باشند که شماری از آنها بشرح زیر می باشد :

1-عایق رطوبت

2-عایق گرما وسرما

3- عایق صوت

4-مقاومت بیشتر در مقابل حریق

5-نسبت مقاومت فشاری مناسب به وزن

6-کاهش بار مرده در ساختمان

7- مقاوم در مقابل نفوذ آب

8-خاصیت خوب جذب و دفع آب
9-راحتی در عمل بریدن و میخ کوبی

10-انقباض مطلوب در حین خشک شدن

11- مقاوم در برابر یخ زدگی بتن

12-جلوگیری از استهلاک سیستم سرمایش و گرمایش گازی معروفند جای خود را به بتن سب

مزایا:

بتن سبک هوادار دارای مزایای زیادی می باشد که برخی از آنها به شرح زیر می باشد.

1-صرفه جویی در هزینه های ترانسپورت قطعات پیش ساخته بتنی(تولید صنعتی)

2-صرفه جویی در حمل مصالح (وزن ماسه و میله گرد)

3-عمر مفید بیشتر قالب فلزی (ضریب تکرار بیشتر قالب در سیستم بتن سبک)

4-حذف دستمزدهای بنایی (گچ و خاک و حداقل سفید کاری)

5-حذف هزینه های مصالح (خاک و گچ)

6-حذف دستمزدهای اجرای نماکاری (سیمانکاری)

7-حذف هزینه های مصالح نماکاری (سیمان و ماسه)

8-حذف هزینه های مربوط به ترانسپورت پرت مصالح به خارج از کارگاه

9-صرفه جویی در هزینه های مصرف انرژی (نفت، گاز، برق، ...) بدلیل تبادل حرارتی و برودتی بهتر دیوار بتن سبک

10-سرعت در اجرا به دلیل سیال بودن بتن سبک، عمل بتن ریزی به مراتب سریعتر از بتن معمولی انجام می شود و در

این سیستم عمل ویبره حذف می گردد.

11-صرفه جویی در مصرف میله گرد، در اینجا باید رقم 30% را در هزینه های مربوط به وزن میله گرد منظور نموده (دیوارهای باربر و پی ها)

12-سهولت عملیات کنده کاری و هزینه های مربوط در مقایسه با دیوار آجری

13-سرعت در بازگشت سرمایه و پرداخت کمتر بهره بانکی در مقایسه با سیستم های ساخت و ساز سنتی و مشابه آن با

بتن سبک

سبک سازی ساختمان (پی، دیوار، سقف)، افزایش قابل توجه عمر مفید ساختمان (بیش از صد سال)

موارد استفاده

1-ایزولاسیون پشت بام

این بتن می تواند بعنوان یک عایق حرارتی برای پشت بامها مورد استفاده قرارگیرد.

2-ایزولاسیون کف ساختمان به مانند Topseal

این بتن می تواند بعنوان یک عایق رطوبتی و حرارتی برای کفها مورد استفاده قرار گیرد، بطوریکه هر 5 سانتی متر بتن سبک هوادار معادل یک لایه قیر اندود عمل می کند .

یا به عنوان مثال پوشش Topseal می تواند از عایق های نسل جدید باشد،سرد اجرا و بالایه ای کمتر از 1 میلیمتر.

3-ساختمان سازی

ساختمانهای پیش ساخته و قالب درجا بعنوان پارتیشن بندی در انواع سازه (انواع بلوکهای ساختمانی)

4-ژئوتکنیک

این بتن با توجه به سیال بودنش داخل تمامی حفره ها نفوذ کرده و تمام روزنه ها را پر می کند و در مقابل براحتی می توان از آن حفره برداری نمود.

5-محوطه سازی (با قطعات پیش ساخته یا بتن درجا)
این بتن با توجه به خصوصیاتش از جمله مقاومت در برابر یخ زدگی و عدم جذب رطوبت بسیار پوشش مناسبی برای سطح جاده ها و فرودگاهها و پیاده روها می باشد.

6- حصار کشی

از این بتن می توان هر قطعه ای (هر اندازه و هر شکل) برای دیوار محوطه تهیه و نصب نمود .

7-بلوکهای تزئینی و متفرقه

از این بتن می توان هر نوع قطعه بتنی را تهیه نمود، بر این اساس از آن می توان برای ساخت گلدان، نیمکت پارک، سنگ فرش پیاده رو،آبراه باران و ... استفاده نمود.

8- مجسمه سازی

بخاطر سیال بودن بتن و در نهایت سبک بودن آن می توان هر نوع مجسمه ای را تولید کرد.

تمام موارد بالا را میتوان همراه با سلیقه های مختلف بصورت رنگی تولید نمود.

نویسنده : کلینیک بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))