سفارش تبلیغ
صبا ویژن

کلینیک بتن ایران

شرکت کلینیک بتن ایران (کلینیک بتن) شرکتی فعال در زمینه های: گروه مشاور ژئوتکنیک و خدمات فنی و مهندسی بتن: مهندسی و اجرای ترمیم سازه های بتنی، مهندسی و اجرای طرح حفاظت از سازه های بتنی و فولادی، مهندسی و اجرای کف پوشهای صنعتی ، انبارها ، فرودگاه ها ، تعمیرگاه ها و سالن های ورزشی، مقاوم سازی سازه های بتنی به روش FRP و ...، مشاوره ؛ارائه طرح و اجرای آب بندی سازه های بتنی، مشاوره و اجرای کاشت آرماتور ، بولت و کرگیری در بتن مسلح. گروه آزمایشگاهی بتن؛ ارائه طرح اختلاط بت

کاهنده های آب بتن با رنج متوسط

افزودنی‌های کاهنده‌ی آب با رنج متوسط اولین بار در سال 1984 میلادی معرفی شدند. این افزودنی‌ها کاهش چشمگیری در آب بتن ایجاد می‌کنند. آن‌ها بین 6 تا 12 درصد از آب بتن‌های با اسلامپ بین 125 تا 200 میلی‌متر را کاهش می‌دهند، بدون این که مانند کاهنده‌های معمولی در زمان گیرش بتن تاخیری ایجاد نمایند. کاهنده‌های معمولی آب برای اسلامپ‌های بین 100 تا 125 میلی‌متر مناسب هستند.  افزودنی‌های کاهنده‌ی آب با رنج متوسط برای کاهش چسبناکی و افزایش قابلیت پمپاژ، روانی و کارایی در بتن‌های حاوی دوده‌ی سیلیس و دیگر مواد سیمانی به کار می‌رود. همچنین برخی از این نوع مواد قابلیت هوازایی نیز دارند و در بتن‌های با اسلامپ پایین استفاده می‌شوند.

کاهنده‌های آب با رنج بالا

افزودنی‌های کاهنده‌ی آب با رنج بالا شامل نوع F (کاهنده‌ی آب) و نوع G (کاهنده‌ی آب و ایجاد تاخیر در گیرش بتن) است. این مواد می‌توانند آب مورد نیاز، مقدار سیمان و نسبت آب به سیمان را کاهش دهند و بتنی با مقاومت بالا و کارایی متوسط تولید کنند. با استفاده از این نوع افزودنی‌های کاهنده‌ی آب، آب حدود 12 تا 30 درصد کاهش پیدا می‌کند. با استفاده از این نوع مواد می‌توان بتن‌هایی با مقاومت 70 مگاپاسکال، مقاومت اولیه‌ی بالا، مقاوم در برابر یون‌های کلرید و چندین و چند مزیت دیگر که به خاطر نسبت آب به سیمان پایین به دست می‌آید، تولید کرد.

کاهنده‌های آب با رنج بالا در مقایسه با کاهنده‌های معمولی، در تولید بتن با کارایی بیشتر، به صرفه تر هستند ایجاد کاهش چشمگیر در آب انداختگی، باعث تسهیل در امر گیرش و سخت شدن بتن در سطوحی که تبخیر آن بالاست، می‌شود. برخی از این نوع مواد، باعث کاهش جدی اسلامپ نیز می‌شوند. همچنین تاخیر در گیرش بتن نیز به وسیله‌ی این مواد ممکن است، اما از طرف دیگر اگر عمل‌آوری مناسب بر روی آن صورت نگیرد، بتن دچار جمع شدگی پلاستیک و در نهایت ترک خوردگی می‌گردد.

 

 

 

 

نمودار مقایسه‌ای مقاومت‌های انواع بتن با گذشت زمان. نمودار C نشانگر بتن معمولی است. بقیه‌ی آن‌ها (N و M و X) بتن‌هایی هستند که از انواع افزودنی‌های کاهنده‌های آب با رنج بالا در آن‌ها استفاده شده است.

 

 

مقایسه کاهش اسلامپ در بتن‌های مختلف. . نمودار C نشانگر بتن معمولی است. بقیه‌ی آن‌ها (N و M و X و B) بتن‌هایی هستند که از انواع افزودنی‌های کاهنده‌های آب با رنج بالا در آن‌ها استفاده شده است.

بتن‌هایی که در آن از افزودنی‌های کاهنده‌ی آب با رنج بالا استفاده شده است، فضای خالی بیشتری نسبت به بتن‌های با افزودنی‌های کاهنده‌ی رنج متوسط دارند. به طور عمومی این موضوع باعث پایین آمدن مقاومت بتن در برابر چرخه‌ی انجماد و ذوب آب می‌شود؛ اما آزمایش‌ها نشان می‌دهد که بتن‌هایی که با استفاده از کاهنده‌های رنج بالای آب بهاسلامپ متوسط می‌رسند، در برابر چرخه‌ی انجماد و ذوب آب نیز دوام بالایی دارند. این موضوع احتمالاً به دلیل نسبت آب به سیمان پایین در این نوع بتن‌ها رخ می‌دهد.

از همین مواد می‌توان برای روان کردن بتن استفاده کرد. در این صورت به آن‌ها افزودنی‌های روان‌کننده یافوق‌روان‌کننده گفته می‌شود.


روان کننده ها و فوق روان کننده های بتن

 

 افزودنی‌های روان‌کننده بتن  که بعضاً فوق‌روان‌کننده نیز نامیده می‌شوند، برای بالا بردن اسلامپ بتن تازه و افزایش کارایی به آن اضافه می‌شوند و آن‌ها را به بتن روان تبدیل می‌کنند. این افزودنی‌ها در واقع همان کاهنده‌های آب با رنج بالا هستند که در این اینجا به منظور و اهداف دیگری از آن‌ها استفاده می‌شود. بتن روان بسیار مایع است و با کارایی بالاتری که دارد می‌توان از آن بدون نیاز به ویبراسیون یا فشرده سازی و بدون این که ذره‌ای آب انداختن یا جدا شدگیدر آن رخ دهد، استفاده کرد. از استفاده‌های مختلف بتن روان می‌توان به مقاطع باریک و لوله‌های زیر آب اشاره کرد. گفتنی است که استفاده از بتن روان، عملیات بتن‌ریزی را تسهیل کرده و هزینه‌های آن را نیز کاهش می‌دهد.

اضافه کردن روان‌کننده یا فوق‌روان‌کننده به بتنی با اسلامپ 75 میلی‌متر، آن را به بتنی با اسلامپ 230 میلی‌متری تبدیل می‌کند. طبق تعریف، به بتنی «بتن روان» گفته می‌شود که اسلامپی بزرگ‌تر از 190 میلی‌متر داشته باشد و هم‌چنان خاصیت‌های اصلی خود را حفظ کند.

در استانداردها و آیین‌نامه‌های بتن، از دو نوع روان‌کننده نام برده شده است: نوع 1: روان کننده و نوع 2: روان‌کننده و ایجاد کننده‌ی تاخیر در گیرش. روان‌کننده‌ها معمولاً تاثیر بیشتری در تولید بتن روان نسبت به کاهنده‌های معمولی یا با رنج معمولی آب دارند. تاثیر روان‌کننده‌ها در افزایش کارایی و اسلامپ حدود 30 تا 60 دقیقه دوام دارد و پس از آن کارایی و اسلامپ بتن به سرعت کاهش می‌یابد. بالا بودن دما نیز می‌تواند به سرعت کاهش اسلامپ قوت ببخشد. این افزودنی‌ها معمولاً در محل اجرای پروژه به بتن اضافه می‌شوند و به شکل‌های مایع و پودر موجود هستند. زمان گیرش بتن ممکن است بر پایه ویژگی‌های مختلف این افزودنی از جمله ترکیب شیمیایی، مقدار مورد استفاده و واکنش آن با دیگر مواد مورد استفاده در بتن، به تاخیر بیفتد یا به آن سرعت بخشیده شود. برخی روان‌کننده‌ها قادرند تا گیرش نهایی بتن را بین یک تا چهار ساعت به تاخیر بیندازند.

 

 

نمودار مقایسه‌ای کسب مقاومت بتن معمولی و بتن روان. بتن C یک بتن معمولی است و بقیه‌ی نمودارها، مربوط بهبتن‌هایی هستند که در آن‌ها از انواع مختلف روان‌کننده یا فوق‌روان‌کننده استفاده شده است.

با این که پیش از این اشاره کردیم که بتن‌های روان اصولاً آب انداختگی ندارند، اما آزمایش‌ها نشان داده که بتن روانبا نسبت آب به سیمان مساوی با یک بتن معمولی، دارای آب انداختگی بیشتری است. اما این مقدار در بتن‌های بااسلامپ بسیار بالا و یا بتن‌هایی که مقدار آب زیادی دارند، بسیار کم‌تر است. هم‌چنین جمع شدگی بر اثر خشک شدن این نوع بتن‌ها نیز نسبت به انواع مشابه بسیار کم‌تر می‌باشد.

میزان تاثیر روان‌کننده‌ها یا فوق‌روان‌کننده‌ها در بتن، به میزان و عیار سیمان و هم‌چنین اسلامپ اولیه‌ی بتن مورد نظر بستگی دارد.

بتن روان نسبت به بتن معمولی دارای هوازایی بیشتری است. بر همین مبنا تحقیقات نشان داده بتن روان در مناطق مرطوب دارای عملکرد ضعیف‌تری هستند. با این حال عملکرد بتن روان با نسبت آب به سیمان پایین در مناطق سردسیر، مطلوب گزارش شده است.

 


افزودنی های حجم دهنده بتن

از پودر آلومینیوم و دیگر مواد حجم دهنده به مقدار بسیار کمی در بتن یا دوغاب استفاده می‌شود تا حجم آن پیش از سخت شدن کمی افزایش پیدا کند. از این مواد در شرایطی استفاده می‌شود که بخواهیم فضاهای خاصی را با بتن یادوغاب پوشش دهیم. تاثیر این نوع مواد و میزان افزایش حجم به عوامل مختلفی همچون میزان افزودنی مورد استفاده، مقدار مواد قلیایی در سیمان و چندین متغیر دیگر بستگی دارد. زمانی که میزان افزایش حجم برای ما مهم و حیاتی باشد، بایستی ابتدا با کنترل دقیق مواد مخلوطی و دما، بر روی بتن آزمایش انجام دهیم تا بتوانیم میزان افزایش حجم را پیش بینی کنیم. افزودنی‌های حجم دهنده‌ی بتن باعث کاهش جمع شدگی توسط خشک شدن یا کربنتاسیون بعد از گیرش نمی‌شود.

 

افزودنی‌های کاهنده‌ی هوا

با اضافه کردن افزودنی‌های کاهنده‌ی هوا به بتن، میزان هوا و حباب‌های موجود در بتن کاهش می‌یابد. از این مواد زمانی استفاده می‌شود که نتوانیم با تغییرات در مواد مورد استفاده در مخلوط و دیگر مواد و افزودنی‌های مورد استفاده، میزان هوازایی بتن را کنترل نماییم. استفاده از این نوع افزودنی‌ها بسیار کمیاب است؛ بنا بر این داده‌های زیادی از آن در دست نیست. به همین دلیل ضروری است که پیش از استفاده در هر پروژه‌ای مورد آزمایش قرار گیرند.

افزودنی‌های ضد جرم و ضد حشره

رشد باکتری و قارچ‌ها در بتن‌های سخت شده، خصوصاً در مناطق مرطوب، از مشکلات معمول است. از این نوع افزودنیبرای مبارزه، کنترل و از بین بردن رشد باکتری‌ها، قارچ‌ها، حشرات و غیره در بتن استفاده می‌شود. موثرترین مواد در راه نیل به این هدف، فنول‌ها، امولوسیون‌های دیلدرین و ترکیبات مس می‌باشد. اثر این نوع مواد معمولاً موقتی است و اگر در حجم زیادی از آن‌ها استفاده شود، می‌تواند باعث کاهش مقاومت فشاری بتن گردد.

افزودنی‌های ضد فرسایش بتن به وسیله آب

این نوع افزودنی‌ها که با نام افزودنی‌های ضد شست‌وشو نیز شناخته می‌شوند، در بتن‌هایی که در مسیر مستقیم جریان آب قرار دارند یا به هر نحوی تحت تاثیر مستقیم آب هستند، استفاده می‌شود تا میزان آسیب دیدگی در آن‌ها به وسیله‌ی آب، به حداقل برسد. این مواد این امکان را به ما می‌دهند که بدون استفاده از لوله‌های ترمیمی، بتوانیم ازبتن در زیر آب نیز استفاده کنیم. این مواد ویسکوزیته‌ی آب در مخلوط بتن را افزایش داده و باعث افزایش خاصیت تیکسوتروپی و همچنین افزایش مقاومت بتن در برابر آب انداختگی می‌شود. این مواد معمولاً حاوی محلول‌های سلولزی پلیمرهای اتر یا اکرلیک در آب است.

مشکلات ناسازگاری افزودنی‌های بتن با هم

بتن تازه می‌تواند با مشکلات متعددی روبه‌رو شود که ناسازگاری مواد افزودنی یکی از آن‌هاست. واکنش‌هایی که بین برخی از افزودنی‌ها رخ می‌دهد باعث کاهش اسلامپ، کاهش حباب‌زایی، تسریع گیرش و مشکلات دیگر در بتن تازهمی‌گردد. هر چند مشکلات در واقع در حالت تازه و پلاستیک، بتن را تحت تاثیر قرار می‌دهد؛ اما مطالعات نشان داده که در طولانی‌مدت هم باعث ایجاد کاستی‌هایی در بتن می‌شود.

بهترین راه مقابله با این نوع مشکل، آزمایش و تجربه‌گرایی است. بتن و مواد مورد استفاده باید پیش از بتن‌ریزیاصلی، در شرایط محیطی مشابه مورد آزمایش قرار گیرند و نتایج ثبت شوند. در صورت وجود مشکل، ماده‌ای که مشکل را ایجاد کرده بایستی پیدا شود و به جای آن یا مواد دیگری که با آن‌ها سازگاری ندارد، از مواد جایگزین استفاده شود.

شرکت فنی مهندسی کلینیک بتن ایران، با سال‌ها تجربه در زمینه‌ی افزودنی‌های بتن، بهترین مواد و خدمات را در این زمینه به مشتریان ارائه می‌کند.


آزمایش مقاومت کششی بتن

کلینیک بتن ایران :: مقالات علمی بتن

کارایی و مقاومت بتن با هم رابطه ای عکس دارند. به این معنا که با افزایش کارایی بتن...

تمامی مراحل و مواد مورد استفاده در ساخت بتنبر میزان کارایی آن تاثیر دارند. کارایی بتن به معنای میزان سهولت در مخلوط کردن، انتقال و بتن ریزی در محل پروژه می‌باشد. کار با یک بتن با کارایی بالا بسیار راحت تر و بهتر است چرا که به راحتی می‌تواند جا به جایش کرد و بتن ریزی نیز به آسانی انجام می‌شود.

کارایی و مقاومت بتن با هم رابطه‌ای عکس دارند. به این معنا که با افزایش کارایی بتن، مقاومت بتن کاهش می‌یابد که موجب کاهش دوام و عمر بتن نیز می‌شود.

 

عوامل اصلی تاثیرگذار بر روی کارایی بتن :

مقدار سیمان بتن
مقدار آب بتن
نسبت‌های مواد مختلف در مخلوط بتن
اندازه‌ی سنگدانه‌ها
شکل سنگدانه‌ها
مرغوبیت سنگدانه‌ها
ویژگی‌های سطوح سنگدانه‌ها
افزودنی‌های مورد استفاده در بتن
استفاده از مواد جایگزین سیمان در بتن
سیمان، سنگدانه و آب مواد اصلی مورد استفاده برای ساخت بتن هستند. در بتن از افزودنی‌های مختلفی برای تغییر ویژگی‌های مختلف آن استفاده می‌شود. ویژگی‌های این مواد و میزان استفاده از آن‌ها بر کارایی بتن تاثیر می‌گذارد. در ادامه عوامل عمومی تاثیرگذار بر کارایی بتن را بررسی می‌کنیم:

مقدار سیمان بتن:

مقدار سیمان مورد استفاده در بتن تاثیر بسیار بالایی در کارایی آن دارد. هر چه مقدار سیمان بیشتر باشد، معنی آن این است که چسب بیشتری برای پوشش دادن سطح سنگدانه‌ها و پر کردن تخلخل‌ها موجود است. این موضوع باعث کاهش اصطکاک بین سنگدانه‌ها شده و جاری شدن بتن در هنگام مخلوط کردن، انتقال و بتن‌ریزی تسهیل می‌گردد. همچنین برای یک بتن با نسبت آب به سیمان ثابت، افزایش میزان سیمان به معنی افزایش میزان آب مورد استفاده نیز هست که در نهایت کارایی بتن را افزایش می‌دهد..

نوع سیمان:

نوع و مشخصات سیمان بر میزان کارایی بتن تاثیرگذار خواهد بود. افزایش عیار سیمان باعث می‌شود تا بتن به آب بیشتری برای رسیدن به کارایی مورد نظر پیدا کند. در حالی که سیمان با عیار کمتر، به آب کمتری برای رسیدن به همان میزان کارایی نیاز دارد.

نسبت آب به سیمان یا مقدار آب بتن:

یکی دیگر از عوامل بسیار مهم و تاثیرگذار در کارایی بتن، میزان آب مورد استفاده در آن می‌باشد. عموما نسبت آب بهسیمان بین 0?45 تا 0?6 تقریباً برای تمامی انواع مخلوط‌ها، کارایی خوبی را ارائه خواهد کرد. هر چه نسبت آب به سیمانبیشتر باشد، میزان آب مورد استفاده نسبت به مقدار سیمان بیشتر خواهد بود و در نتیجه کارایی بتن افزایش خواهد داشت.

اندازه سنگدانه‌ها:

میزان سطح خارجی سنگدانه‌ها به اندازه‌ی آن‌ها بستگی دارد. هر چه سنگدانه‌ها بزرگتر باشند، سطح خارجی آن‌ها کم‌تر خواهد بود. هر چه سطح خارجی سنگدانه‌ها بیشتر باشد، برای پوشش دادن سطوح به سیمان بیشتری احتیاج است. این موضوع باعث کاهش نسبت آب به سیمان و کاهش کارایی می‌شود.

در بتن معمولاً از افزودنی‌های مختلفی برای افزایش و یا کاهش ویژگی‌های مختلف آن استفاده می‌شود. چندین افزودنیمختلف نیز برای بهبود وضعیت کارایی بتن وجود دارد که روان کننده و فوق روان کننده نام دارند. این افزودنی‌ها قادر هستند تا کارایی بتن‌هایی با نسبت آب به سیمان بسیار پایین را نیز افزایش دهند. از افزودنی‌های هوازا نیز برای افزایش کارایی در بتن استفاده می‌شود. این افزودنی با ایجاد حباب‌های هوا در بتن، اصطکاک بین سنگدانه‌ها را کاهش می‌دهد و در نتیجه کارایی افزایش می‌یابد.

 

 

 


تفاوت های میان بتن معمولی و بتن با مقاومت بالا

در تقسیم‌بندی انواع بتن، به بتنی که مقاومتش بین 20 تا 40 مگاپاسکال باشد، بتن معمولی گفته می‌شود. همچنین به بتنی که مقاومتش بیش از 140 مگاپاسکال باشد، بتن با مقاومت بالا یا High Strength Concrete گفته می‌شود.

با گذشت زمان، فاکتورهای مشخص‌کننده‌ی بتن معمولی و مقاومت بالا نیز تغییر کرده است. به طور مثال، صد سال پیش، بتنی با مقاومت 28 مگاپاسکال، بتن با مقاومت بالا محسوب می‌شده. ولی هم‌اکنون بتن‌هایی تولید شده‌اند که تا 800 مگاپاسکال مقاومت دارند.

از لحاظ میزان استفاده، بتن معمولی پرمصرف‌تر از بتن با مقاومت بالاست. دلیل اصلی استفاده از بتن با مقاومت بالا، کاهش وزن، جمع شدگی، نفوذپذیری و افزایش دوام سازه است. همچنین در برخی سازه‌ها، به دلایل مختلف که معمولاً مربوط به معماری می‌شود، لازم داریم تا ستونی کوچک بار زیادی را تحمل کند. در این صورت نیاز به استفاده از بتن با مقاومت بالا داریم.

بتن معمولی و بتن با مقاومت بالا، در ویژگی‌های مختلف، تفاوت‌هایی با هم دارند که در این نوشتار قصد داریم تا به این تفاوت‌ها بپردازیم.

بتن معمولی، اغلب و در صورت استفاده از سنگدانه‌های مناسب کارایی بالایی دارد و در هنگام بتن‌ریزی و کار کردن بابتن، به سادگی جاری می‌شود. در مقابلبتن با مقاومت بالا معمولا چسبناک‌تر است و جاری شدن و بتن‌ریزی آن بسیار دشوارتر می‌باشد. به همین دلیل معمولاً از افزودنی‌های روان‌کننده برای این نوع بتن استفاده می‌کنند. دلیل اصلی کاراییِ کم بتن با مقاومت بالا، مقدار زیاد سیمان مورد استفاده در آن است.

 

پدیده آب انداختگی معمولاً در سطح بتن‌های معمولی رخ می‌دهد و آسیب دیدگی معمولی در این نوع بتن است. اما یکی از ویژگی‌های بسیار خوب بتن با مقاومت بالا این است که آب انداختگی‌اش بسیار بسیار کم است و حتی در بسیاری موارد می‌توان گفت که بتن با مقاومت بالا آب انداختگی ندارد.

به دلیل مقاومت و سختی بالا، بتن با مقاومت بالا نفوذپذیری کم‌تری نسبت به بتن معمولی دارد. همین موضوع باعث می‌شود تا دی‌اکسید کربنِ کم‌تری وارد بتن شود و پدیده‌ی کربناتاسیون نیز در این نوع بتن به ندرت رخ بدهد. کربناتاسیون پدیده‌ای است که در آن دی‌اکسید کربن موجود در هوا با چسب سیمانِ سخت شده واکنش می‌دهد و کلسیم کربنات تولید می‌کند؛ که این پدیده باعث آسیب دیدگی بتن می‌شود.

ویژگی نفوذپذیری بسیار پایین در بتن با مقاومت بالا، باعث جلوگیری و پیش‌گیری از بسیاری از انواع آسیب دیدگی‌ها در بتن می‌شود. اول این که مواد سولفاتی و شیمایی راهی به بتن پیدا نمی‌کنند و در نتیجه حمله سولفاتی یا شیمیاییاتفاق نمی‌افتد. دوم این که احتمال خوردگی فولاد در بتن بسیار پایین می‌آید. هم چنین احتمال حمله‌ی کلریدی به بتنتا حد زیادی کاهش پیدا می‌کند.

از دیگر تفاوت‌های میان بتن معمولی و بتن با مقاومت بالا، می‌توان به تفاوت در سطح بتن سفت شده اشاره کرد. در بتن معمولی، سطح بتن معمولا زبر و خشن است و در اغلب اوقات ناصاف است. اما در بتن با مقاومت بالا، سطح بتن صاف و صیقلی است و کم‌تر زبری در آن دیده می‌شود.

 


انتخاب روش و آماده سازی بتن برای ترمیم

حالا نوبت انتخاب روش و مواد مورد استفاده برای ترمیم است. پس از تکمیل سه مرحله‌ی قبلی، در این مرحله کار سریع‌تر جلو می‌رود. در آن سه مرحله مشخص شد که ترمیم بایستی در مقابل چه شرایطی مقاومت داشته باشد؛ بازه زمانی ترمیم و پایان آن نیز تعیین شد. این اطلاعات، به علاوه‌ی اطلاعات حجم و مساحت بتنی که باید مورد ترمیم قرار بگیرد، کمک می‌کند تا مواد مورد استفاده در ترمیم مشخص شود. همچنین در هنگام انتخاب مواد برای ترمیم بتن، مسائل مربوط به هم‌زیستی مواد بایستی مورد بررسی قرار گیرد (Vaysburd et al., 2014). باید از انتخاب مواد و روش‌هایی که باعث خسارت بیشتر یا شتاب بخشیدن به آسیب دیدن بتن می‌گردند خودداری نمود.

 

آیین‌نامه و راهنماهای مفید در این مورد:

«راهنمای انتخاب مواد برای ترمیم سطح بتن»: (ICRI 320.2R, 2009)

«راهنمای انتخاب مواد برای ترمیم بتن»: (ACI 543.3R, 2006)

آماده‌سازی بتن برای ترمیم، یکی از فاکتورهای مهم در دوام ترمیم است. این مرحله شامل حذف تمامی قسمت‌های آسیب دیده و فراهم کردن سطحی بدون آسیب دیدگی برای عمل کردن بی‌نقص مواد ترمیمی است. اگر این مرحله به درستی انجام نگیرد، هر چقدر هم که مراحل دیگر کامل و بی‌نقص باشند، ترمیم با شکست مواجه خواهد شد. ضروری است که پیش از استفاده از مواد ترمیمی، بتن آسیب دیده به صورت کامل برداشته شود.

این مرحله از ترمیم بسیار حیاتی است و نیاز است پیش از شروع، مراحل روی نمونه‌هایی آزمایش شوند و نتایج بررسی گردند تا اطمینان کافی از این که بتن به مقاومت و سطح کیفی مورد نظر دست می‌یابد، حاصل شود.

نخستین مرحله برای آماده‌سازی بتن برای ترمیم، بریدن قسمت مورد نظر با اره به عمق 1 اینچ یا بیشتر در صورت امکان، است

این عمل جداسازی به صورت تخریب با آب (هایدرو دیمولیشین) نیز می‌تواند صورت بگیرد. البته این نوع جداسازی باعث به جا ماندن لبه‌های تیز و خشن می‌شود. بنا بر این برش با اره به صرفه‌تر است. برای قسمت‌های که از بتن که فولاد جاسازی شده درون آن دچار خوردگی شده، ضروری است که بتن تا قسمتی بیش از سطح خورده شده بریده شود؛ هم‌چنین باید مراقب بود که فولاد آسیب نبیند.

هدف از این که گفتیم لبه‌ها بتن بریده شده نباید تیز و خشن باشند، این است که در چنین حالتی مواد ترمیمی راحت‌تر تحکیم می‌یابند. تجربه نشان داده که در غیر این صورت، ترمیم به سرعت با شکست مواجه می‌شود.

بتن آسیب دیده باید به صورت کامل از سازه جدا شود تا مواد ترمیمی به خوبی جایگزین شوند. اگر مواد ترمیمی رویبتن آسیب دیده ریخته شوند، به هیچ وجه موثر نخواهند بود.

در جداسازی به وسیله فشار آب (هایدر بلستینگ یا هایدرو دیمولیشین) بایستی فشاری در حدود 8 تا 40 هزار psi بربتن وارد شود. (تصویر پایین). برتری این روش این است که قسمت‌های آسیب دیده را به صورت کامل جدا می‌کند تا تنها بتن با کیفیت و سالم به جا بماند.

بعد از مرحله جداسازی بتن آسیب دیده، نوبت به آماده‌سازی فولاد تقویت شده در بتن می‌رسد. عموماً اگر بعد از جداسازی بتن آسیب دیده، بیش از یک سوم فولاد در معرض دید قرار بگیرد، بایستی بتن به صورت کامل از اطراف فولاد برداشته شود.

 


عوامل آسیب دیدگی بتن

این رده‌بندی برای این انجام شده که نشان بدهیم و تاکید بکنیم که در وهله‌ی اول، تشخیص عامل آسیب دیدن بتنبسیار مهم است. و بعد از این مرحله است که روش و متود ترمیم را انتخاب می‌کنیم. پیش از شروع ترمیم نیز، بایستی توضیحات کامل در مورد نوع ترمیم مورد نظر بررسی و مطالعه شود. (در آینده به این موضوعات نیز خواهیم پرداخت)

اگر بتن دچار آسیب دیدگی شود، به این معنی است که بتن دوام کافی و عمر پیش‌بینی شده‌اش را برآورده نکرده است. در کنار این، عوامل آسیب دیدن بتن می‌تواند به طور کلی به سه رده تقسیم شود:

ناتوانی بتن در تحمل باری که برای آن طراحی شده، مانند بار سازه‌ای عادی یا بارهای غیر عادی مانند زلزله یا سیل.
ناتوانی در مقابله با شرایط فیزیکی محیط مانند فرسایش، سایش، خوردگی و انجماد آب.
ناتوانی در مقابله با شرایط شیمایی محیط مثل حمله سولفاتی، واکنش قلیایی سنگدانه‌ها، نفوذ کلراید (که منجر بهخوردگی فولاد می‌شود)
عواملی که می‌تواند منجر به تخریب بتن شود در ادامه به همراه توضیحات مربوط به آن آمده است.

1. استفاده از آب اضافی هنگام مخلوط کردن بتن

استفاده آب اضافی مخلوط بتن، پیش سال 1920 بسیار معمول بود؛ چرا که باعث راحت‌تر شدن عملیات بتن‌ریزی و شکل دادن به بتن می‌شد. اما نتیجه‌ی آن پایین آمدن مقاومت و عمر بتن بود. متاسفانه، استفاده از آب اضافی هنوز هم بعضاً معمول است.

آب اضافی باعث کاهش مقاومت، بالا رفتن میزان جمع‌شدگی، افزایش تخلخل، افزایش خزش و کاهش مقاومت بتن در برابر فرسایش می‌شود. تمامی این‌ها به این معنی است که بتن دوام کافی را دارا نخواهد بود.

در نمودار زیر، رابطه بین نسبت آب به سیمان و دوام بتن نمایش داده شده است. می‌بینیم که نسبت آب به بتن هر چه کم‌تر باشد، دوام نیز بیشتر است و همچنین وجود مقداری هوا نیز الزامی است.

 

تشخیص آسیب دیدن بتن به علت استفاده از آب اضافی می‌تواند کار دشواری باشد. چون نشانه‌های آن شبیه نشانه‌های انجماد آب، فرسایش و سایش و ترک خوردن بر اثر جمع‌شدگی می‌باشد.

برای آن که مشخص شود علت آسیب دیدن بتن، آب اضافی بوده یا خیر، معمولاً قطعه‌ای از بتن آسیب ندیده لازم است. در هنگام آزمایش‌های پتروگرافی، با خروج آب از بتن، وجود آب اضافی در آن مشخص می‌شود. با این حال در برخی موارد، آبی که در هنگام حمل بتن با میکسر یا در هنگام بتن‌ریزی به آن اضافه می‌شود؛ در جایی ثبت نمی‌شود. به همین دلیل، لازم و ضروری است که در هر مرحله از بتن‌ریزی، اگر آبی به آن اضافه شد، در مستندات نوشته و ثبت شود.

اگر آسیب دیدگی زود تشخیص داده شود، اضافه کردن موادی همچون سیلان یا سیلاکسون می‌تواند کمک کند. البته چنین نوع ترمیم‌هایی دائمی نیستند و در مدت 5 تا 20 سال آینده نیاز به تکرار دارند. در موارد دیگر، برای ترمیم چنین نوع آسیب دیدگی‌هایی، از روش ترمیم باریک استفاده می‌شود.


خطا در طراحی سازه های بتنی

خطا در طراحی سازه‌ی بتنی، می‌تواند آسیب‌های بسیاری را به بتن وارد کند. ساده‌ترین حالت زمانی است که به سازه باری وارد می‌شود که برای تحمل آن طراحی نشده است. یکی دیگر از خطاهایی که رخ می‌دهد، پیش‌بینی نکردن جای عبور لوله‌های برق و جعبه‌های خروجی است. سوراخ کردن بتن پس از سخت شدن آن، آن هم در موقعیتی در نزدیکی سطح آن، باعث به وجود آمدن ترک بر روی آن و ورود رطوبت به بتن می‌شود. طبیعی است که در چنین حالتی بتن زمان زیادی دوام نمی‌آورد و دچار آسیب دیدگی‌های مختلفی از جمله یخ زدن آب (افزایش حجم و در نتیجه شکست بتن)، واکنش قلیایی سنگ‌دانه‌ها و خوردگی آرماتورها می‌شود.

فلزات ظرفیت گرمایی پایینی دارند و در هنگام سرد یا گرم شدن هوا، درجه حرارتشان به سرعت تغییر می‌کند. بر اثر تغییر دما تغییر شکل می‌دهند؛ کاهش دما باعث کاهش حجم و افزایش دما باعث افزایش حجم فلزات می‌شود. اگرآرماتور داخل بتن بر اثر برودت یا گرمای هوا دچار تغییر دمای زیاد و ناگهانی شود، نیروی کششی یا فشاری به بتن وارد می‌کند. بتن در برابر نیروی فشاری مقاوم است، اما مقاومت در برابر نیروی کششی بسیار پایین است (در اصل ازآرماتور استفاده می‌کنند تا مقاومت کششی بتن بالا برود). در نتیجه‌ی این نیروی فشاری که به آن وارد می‌شود، بتنترک خورده و شرایط برای آسیب دیدگی‌های دیگر مهیا می‌شود. در سازه‌های مفصل‌دار، اگر مفصل مناسبی برای آن سازه طراحی نشود، بتن دچار مشکل و آسیب دیدگی می‌شود. این نوع آسیب دیدگی هم در دسته‌ی خطا در طراحی قرار می‌گیرد.

 

دیگر خطایی که در این دسته قرار می‌گیرد، استفاده‌ی اشتباه از ترکیب بتن در جای نامناسب است. به طور مثال، استفاده از بتن در قسمتی از سازه که بزرگ و قطور است، باعث می‌شود تا بتن دچار آسیب دیدگی شود. اما چگونه؟ روند سخت شدن بتن فرآیندی گرماده است و وقتی مقدار بتن زیاد باشد، این گرما به حد بسیار بالایی می‌رسد و باعثترک‌خوردگی بتن می‌گردد. برای سازه‌هایی که نیاز به بتن زیادی دارند، بایستی از بتن با گرمادهی پایین استفاده کرد و اقدامات لازم و ویژه‌ای برای سرد شدن آن انجام داد. استفاده از بتن غیر متناسب با آرماتورها هم باعث آسیب دیدگی بتن می‌شود و در این دسته قرار می‌گیرد. بتنی که متناسب با فلزات (آرماتورهای مورد استفاده) نباشد، باعث خوردگی آرماتور شده و خسارت زیادی بر بتن وارد می‌کند.

 

 

ترمیم خسارتی که بر بتن بر اثر خطا در طراحی وارد آمده، می‌تواند بسیار سخت باشد. چون در موارد بسیار، تغییر دادن شرایطی که منجر به آسیب دیدن بتن شده، دشوار است. در بسیاری از موارد، بایستی قسمت اعظمی از بتن جایگزین شود، آرماتورها عوض شوند تا شرایط تغییر کند و بتن دوباره دچار آسیب دیدگی نشود. در ترمیم بتن آسیب دیدهتوسط خطا در طراحی، استفاده از بتن پلیمری و تزریق رزین معمول است. برای ترمیم بتن‌هایی که از فولاد تقویت شدهاستفاده کرده‌اند، معمولاً تزریق 2 تا 3 اینچ بتن کافی است. اما در مواردی که میزان خوردگی خیلی بالا و پیشرفته است، این مقدار بایستی افزایش یابد.


آسیب دیدگی بتن در اثر فرسایش یا سایش و کاویتاسیون

واکنش‌های قلیایی سنگدانه‌ها (AAR) برای بتن‌ریزی‌های بعد از دهه‌ی چهل میلادی، مشکل متدوالی نیستند. قلیا باسنگدانه‌هایی نظیر اوپال، کلدئون، چرت، آندزیت، بازالت و کوارتز واکنش می‌دهد. محصولات این واکنش در حضور آب، افزایش حجم می‌دهند و با ایجاد تنش در بتن ترک ایجاد می‌کنند. وجود ترک‌ها باعث ورود بیشتر آب و رطوبت به بتن و افزایش بیشتر حجم و نتیجتاً آسیب دیدگی بیشترِ بتن می‌شود. این مشکل ابتدا در اوایل قرن بیستم میلادی مشاهده شد، اما مطالعات بر روی آن در دهه 1930 و همزمان با ساخت سد پارکر آغاز شد. در آن زمان، روش‌هایی برای شناساییسنگدانه‌هایی که پتانسیل واکنش داشتند و همچنین مشخص نمودن سیمانی که دارای حداقل 0?6 درصد سدیم و پتاسیم است، ارائه شد. در دهه 40 میلادی، استفاده از سنگدانه‌هایی با قابلیت واکنش قلیایی در بتن ممنوع شد. با این حال همچنان در برخی سازه‌ها، از این نوع سنگدانه‌ها استفاده می‌شود که منجر به آسیب دیدگی بتن می‌شود.

این واکنش‌ها با وجود سال‌ها مطالعه و مشاهده، همچنان برای درک کامل‌تر به تحقیقات بیشتری نیاز دارند. برخیبتن‌ها که حاوی سنگدانه‌های فعال قلیایی هستند بلافاصله نشانه‌های آن را به نمایش می‌گذارند و باعث افزایش حجم و آسیب دیدگی بتن می‌شوند؛ در حالی که برخی دیگر تا سال‌ها خاموش می‌مانند. بدون شک، وضعیت محیطی بتن و نوع سنگدانه‌ها در آن نقش مهمی دارند. در حال حاضر که این متن در حال نگارش است، هیچ روش کلی و بازدارنده‌ای برای جلوگیری از این واکنش‌ها ارائه نشده است، اگر چه ترمیم با لیتیم در برخی موارد ممکن است مفید باشد. به علاوه، چندین روش برای مشخص نمودن میزان پتانسیل سازه‌ی بتن برای افزایش حجم، ارائه شده است، اما هیچ کدام به صورت کامل و جامع پذیرفته نشده‌اند.

آزمایش‌های پتروگرافی در بتن، نشان دادند که ماده‌ای ژل‌مانند در اطراف سنگدانه‌ی فعال تشکیل می‌شود. این ژل در حضور آب یا بخار آب، افزایش حجم چشمگیری دارد و با ایجاد تنش در بتن، باعث افزایش حجم آن و ترک خوردگی می‌شود (عکس پایین).

در ساخت و سازهای جدید، از سیمان‌هایی با خاصیت قلیایی کم و خاکستر سرباره (پوزولان) برای جلوگیری از این نوع آسیب دیدگی استفاده می‌شود. با این حال، در بعضی موارد، این روش‌ها هم برای جلوگیری جواب نداده است. در چنین مواردی، اثبات شده است که مخلوط لیتیمی می‌تواند مانع افزایش حجم شود.

 

اگرچه هیچ روش جامعی برای مقابله با آسیب دیدگی ناشی از واکنش‌های قلیایی ارائه نشده است، ثابت شده که خشک نگه داشتن محیط بتن، در کاهش نرخ افزایش حجم و آسیب دیدن آن بسیار موثر بوده است.

ترمیم بتن‌های آسیب دیده به وسیله واکنش‌های قلیایی، معمولاً عمر کوتاهی دارد. بعد از ترمیم، افزایش حجم در بتنادامه پیدا می‌کند و مواد ترمیمی را نیز از بین می‌برد. با این حال، در برخی موارد، همین ترمیم با عمر کوتاه، بهترین گزینه‌ی روی میز است.

در نهایت باید گفت، با وجود این که آسیب دیدگی به وسیله‌ی واکنش‌هیا قلیایی، بیشتر در بتن‌های قدیمی مشاهده می‌شود، اما همچنان می‌تواند در ساخت و سازهای جدید که از مواد غیر مناسب استفاده کرده‌اند نیز رخ بدهد.

 

 


ترک خوردگی بتن

دلایل زیادی برای ایجاد ترک خوردگی در بتن وجود دارد. ترک خوردگی خود معمولا معلول نوعی آسیب دیدگی دیگر است، اما می‌تواند باعث گسترش آسیب دیدگی و به وجود آمدن انواع دیگر آسیب دیدگی بتن نیز شود.

چرخه‌ی انجماد و ذوب شدن آب، واکنش‌های قلیایی و حمله‌ی سولفاتی می‌تواند باعث ترک خوردن بتن شود. همچنین بتنی که بتن‌ریزی‌اش به شکل استاندارد انجام نشده است، می‌تواند در زمان عمل‌آوری دچار ترک خوردگی شود.

تمامی سیمان‌های پرتلند هنگام هیدراسیون و عمل‌آوری دچار جمع شدگی (هر چند کوچک) می‌شوند. جمع شدگی شکل‌های مختلفی از جمله جمع شدگی حرارتی، جمع شدگی پلاستیک، جمع شدگی بر اثر خشک شدن و جمع شدگی اتوژنیک دارد. بسیاری از متخصصین بتن عقیده دارند که فولاد تقویت شده مانع جمع شدگی و ترک خوردن بتن بر اثر حرارت می‌شود. اما فولاد به طور کامل جلوی جمع شدگی و ترک خوردن بتن را نمی‌گیرد، اگر چه سایز و میزان آن را کاهش می‌دهد. جمع شدگی بر اثر خشک شدن به خاطر اثرات منفی و ترک‌های بسیاری که به جای می‌گذارد، مشهور است (تصویر پایین). این نوع جمع شدگی در زمان تبخیر آب و در هنگام گرفتن بتن و سفت شدن آن رخ می‌دهد. در برخی موارد، ترک‌های به جای مانده از جمع شدگی بر اثر خشک شدن بسیار کوچک هستند و نیازی به ترمیم ندارند.

 

جمع شدگی بر اثر خشک شدن به خاطر اثرات منفی و ترک‌های بسیاری که به جای می‌گذارد، مشهور است

جمع شدگی پلاستیک زمانی رخ می‌دهد که سطح بتن تازه در معرض شرایطی باشد که نرخ تبخیر را بالا می‌برد؛ به طور مثال وزش باد، دمای بالا و رطوبت کم. این جمع شدگی باعث  ترک خوردن بتن در زمانی که هنوز نرم است می‌شود.جمع شدگی پلاستیک می‌تواند ترک‌های عمیق‌تری نسبت به جمع شدگی بر اثر خشک شدن ایجاد کند. در بعضی موارد، این نوع از آسیب دیدگی پیش از پایان عمل‌آوری بتن، با بستن ترک‌ها ترمیم می‌شود.

جمع شدگی حرارتی بر اثر آزاد شدن گرمای زیاد در هنگام سخت شدن بتن و بعد به سرعت سرد شدن آن رخ می‌دهد.بتن بر اثر تغییر دما، خصوصاً تغییر دمای سریع، تغییر اندازه می‌دهد. اگر این‌ها در طراحی محاسبه نشده باشند، منجر به آسیب دیدگی (ترک خوردن) خواهد شد.

فنداسیون نامناسب یکی دیگر از دلایل متداول ایجاد ترک در بتن‌ها می‌باشد. مقاومت کششی بتن معمولاً بین 200 تا 400 psi است. نشست زمین و جابه‌جایی هر چند کوچک فنداسیون می‌تواند منجر به تغییر شرایط بتن و افزایش تنش کششی در بتن شود؛ که نتیجه‌ی آن ترک خوردن بتن است.

 

ترمیم ترک‌های به وجود آمده در بتن کار آسانی نیست. از این رو توصیه می‌شود پیش از شروع مطالعه تمامی حرکات ترک‌ها با دقت ثبت و ضبط شود. پیش از این با روش‌های سنتی و قدیمی این کار صورت می‌گرفت؛ اما امروزه وسایل جدید و الکترونیکی ما را در این امر یاری می‌کنند. حتی گوشی‌های هوشمند نیز این قابلیت را پیدا کرده‌اند که ترک‌ها را ثبت و تحیل کنند. برای این کار، به صورت منظم تصاویری از ترک‌ها تهیه می‌شود تا حرکت و تغییرات آن مورد بررسی قرار گیرد.

 

بیاد داشته باشید جهت تعیین عمق ترک در بتن و میزان ترک بهتر است از تست های غیر مخرب به خصوص تست های اولتراسونیک بتن استفاده نمایید 

همانگونه که در تصویر زیر می بینید اپراتور در حال تست کردن سازه و تعیین عمق ترک به وسیله این دستگاه می باشد.

 

حرکات باید در یک بازه‌ی زمانی نسبتاً طولانی بررسی شوند تا مشخص شود که ترک‌ها صرفاً به دلیل تغییر دمای فصل باز و بسته می‌شوند یا دلایل اساسی دیگری وجود دارد که هر لحظه ترک‌ها را بازتر می‌کند. ترمیم بایستی پس از شناسایی دلیل و رفتار ترک‌ها آغاز شود.

نقش ترک خوردن بتن در خوردگی و زنگ زدن میلگردها همیشه مشخص نیست. تحقیقات نشان داده که ترک‌های با عرض کم‌تر از 0?3 میلی‌متر تاثیر چندانی روی خوردگی فولاد ندارند (Atimay and Ferguson, 1974). با این حال، تحقیقات دیگری (Darwin et al., 1985) (Oesterle, 1997) نشان داده‌اند که خوردگی میلگردها، ارتباط مستقیمی با عرض ترک خوردگی‌ها ندارد؛ احتمالا به این خاطر که بین ترک‌های سطح بتن با عرض ترک‌های نزدیک میلگردها ارتباطی وجود ندارد. ترک‌هایی که در طول میلگردها بر روی بتن به وجود می‌آیند، خرابی بیشتری به بار می‌آورند؛ زیرا خوردگی میلگرد در طول آن، مقاومت بتن را بیشتر کاهش می‌دهد. با وجود تحقیقات مختلفی که در این امر صورت گرفته است، هنوز مشخص نیست که چه ارتباطی بین عرض ترک‌های بتن و خوردگی میلگردها وجود دارد. آزمایش‌ها نشان داده‌اند که کیفیت بتن، مخلوط کردن صحیح و استاندارد بتن و پوشش مناسب برای بتن، نقش مهمی در مقاومت بتن در برابر خوردگی در هنگام ترک خوردن ایفا می‌کنند.

از دیگر تحقیقاتی که نشان می‌دهند بین عرض ترک و خوردگی ارتباطی وجود ندارد می‌توان به (Beeby, 1978) (Tremper, 1947) (Martin and Schiessel, 1969) (Raphael and Shalon, 1971) اشاره کرد. مباحث مفصل‌تر در رابطه با ترک خوردگی بتن در ACI 224 (ACI 224, 2013) آمده است.

ترمیم موفقیت‌آمیز ترک‌های بتن غالباً کار دشواری است. نوع ترمیم مورد نیاز، به مقدار خیلی زیادی وابسته به نوع و عامل ترک خوردگی‌هاست. برای ترمیم ترک خوردگی، لازم است که بدانیم ترک‌ها در حال گسترش‌اند یا از گسترش باز ایستاده‌اند. اگر ترک‌ها مرتباً در حال باز شدن و بسته شدن باشند یا همیشه در حال باز شدن باشند، عملیات ترمیمبسیار پیچیده می‌شود و احتمالاً برای رفع آن نیاز به مواد تقویت کننده داریم. انتخاب و به کار بردن روش اشتباه درترمیم ترک خوردگی به مراتب از ترمیم نکردن بتن زیان‌بار تر است. اشتباه در انتخاب روش، شرایط اولیه‌ی بتن را بدتر و پیچیده‌تر می‌کند.

برای ترمیم برخی از ترک خوردگی‌ها، از تزریق رزین اپوکسی یا پلی‌اورتان استفاده می‌شود. رزین اپوکسی معمولاً برای بازگیری بتن به کار می‌رود. اگر صرفاً بخواهیم جلوی نشت آب را بگیریم و ترمیم سازه‌ای مد نظرمان نباشد، بایستی ازتزریق پلی‌اورتان استفاده کنیم. از رزین اپوکسی برای بستن ترک خوردگی‌ها و نشتی‌های آب کوچک‌تر استفاده می‌شود. رزین پلی‌اورتان نسبت به اپوکسی، انعطاف‌پذیرتر است؛ با این حال از هیچ کدام برای ترمیم سازه‌ای استفاده نمی‌شود.

 

 

 

همچنین جمع‌شدگی و ترک خوردن مواد ترمیمی بتن نیز محتمل است. این ترک خوردگی می‌تواند بسیار سریع‌تر از ترک خوردگی در خود بتن اتفاق بیفتد و ممکن است با ایجاد فشار کششی، به خود بتن نیز آسیب بزند. البته در بیشتر اوقات این ترک‌ها بسیار کوچک‌اند و تاثیر چندانی بر روی ترمیم و عمر آن ندارند. تنها راه پیشگیری از آن، استفاده از مواد ترمیمی مقاوم در برابر جمع شدگی است.